Solve :  from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

61. Solve : tan to the power of negative 1 end exponent open parentheses fraction numerator 1 plus x over denominator 1 minus x end fraction close parentheses equals straight pi over 4 plus tan to the power of negative 1 end exponent comma space x comma space o less than x less than 1.


The given equation is

tan to the power of negative 1 end exponent open parentheses fraction numerator 1 plus x over denominator 1 minus x end fraction close parentheses equals straight pi over 4 plus tan to the power of negative 1 end exponent x space space space space space space space space space space space space space space o t space tan to the power of negative 1 end exponent open parentheses fraction numerator 1 plus x over denominator 1 minus x end fraction close parentheses minus tan to the power of negative 1 end exponent space x space equals space straight pi over 4
tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 1 plus x over denominator 1 minus x end fraction end style minus x over denominator 1 plus open parentheses begin display style fraction numerator 1 plus x over denominator 1 minus x end fraction end style close parentheses left parenthesis x right parenthesis end fraction close square brackets equals straight pi over 4 space space space space space space space space space space space space space space space space space space open square brackets because space space tan to the power of negative 1 end exponent x minus tan to the power of negative 1 end exponent space y space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator x minus y over denominator 1 plus x space y end fraction close parentheses close square brackets
therefore space space space space space tan to the power of negative 1 end exponent open square brackets fraction numerator 1 plus x minus x left parenthesis 1 minus x right parenthesis over denominator 1 minus x plus x left parenthesis 1 plus x right parenthesis end fraction close square brackets equals straight pi over 4
therefore space space space space space space space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis equals straight pi over 4
therefore space space space space space space space straight pi over 4 equals straight pi over 4
∴ equation has infinitely many solutions.
151 Views

Advertisement
62. Solve, the following equations;
2 tan–1(cos x) = tan–1t (2 cosec x)
227 Views

63. Solve, the following equations;

tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus x over denominator 1 plus x end fraction close parentheses equals 1 half tan to the power of negative 1 end exponent space x comma space left parenthesis x space greater than space 0 right parenthesis
107 Views

64. cos to the power of negative 1 end exponent x plus sin to the power of negative 1 end exponent fraction numerator 1 over denominator square root of 5 end fraction equals straight pi over 4
101 Views

Advertisement
65. tan to the power of negative 1 end exponent fraction numerator x minus 1 over denominator x minus 2 end fraction plus tan to the power of negative 1 end exponent fraction numerator x plus 1 over denominator x plus 2 end fraction equals straight pi over 4.
134 Views

66. Find the value of tan open parentheses space sin to the power of negative 1 end exponent 3 over 5 plus cot to the power of negative 1 end exponent 3 over 2 close parentheses
105 Views

67. Prove that 2 space sin to the power of negative 1 end exponent 3 over 5 equals tan to the power of negative 1 end exponent 24 over 7.
98 Views

68. Show that sin to the power of negative 1 end exponent 3 over 5 minus sin to the power of negative 1 end exponent 8 over 17 equals cos to the power of negative 1 end exponent 84 over 85.
313 Views

Advertisement
69. Prove that cos to the power of negative 1 end exponent 4 over 5 plus cos to the power of negative 1 end exponent 12 over 13 equals cos to the power of negative 1 end exponent 12 over 13 equals cos to the power of negative 1 end exponent 33 over 65.
102 Views

70. Prove that cos to the power of negative 1 end exponent 12 over 13 plus sin to the power of negative 1 end exponent 3 over 5 equals sin to the power of negative 1 end exponent 56 over 65.
145 Views

Advertisement