from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

91. Simplify

cot to the power of negative 1 end exponent open parentheses square root of 1 plus straight x squared end root plus straight x close parentheses
124 Views

92. Prove that tan to the power of negative 1 end exponent x plus tan to the power of negative 1 end exponent fraction numerator 2 space x over denominator 1 minus x squared end fraction equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 x minus x cubed over denominator 1 minus 3 x squared end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 x minus x cubed over denominator 1 minus 3 x squared end fraction close parentheses comma open vertical bar x close vertical bar less than fraction numerator 1 over denominator square root of 3 end fraction.
128 Views

93. Show space that space tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root end fraction close square brackets equals straight pi over 4 plus 1 half cos to the power of negative 1 end exponent space straight x squared.
136 Views

94. Prove space that space cot to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root minus square root of 1 minus sin space straight x end root end fraction close square brackets equals straight x over 2 comma space space straight x space element of space open parentheses 0 comma space straight pi over 4 close parentheses.
108 Views

Advertisement
95. If tan–1.x + tan–1y + tan –1z = straight pi, prove that x + y + z = x y z.
2505 Views

Advertisement

96. If space cos to the power of negative 1 end exponent straight x over straight a plus cos to the power of negative 1 end exponent straight y over straight b equals straight a comma space space prove space that space straight x squared over straight a squared minus fraction numerator 2 space straight x space straight y over denominator straight a space straight b end fraction cos space straight a plus straight y squared over straight b squared equals sini squared straight a.


because space space cos to the power of negative 1 end exponent straight x over straight a plus cos to the power of negative 1 end exponent straight x over straight b equals straight a

therefore space space space cos to the power of negative 1 end exponent open square brackets straight x over straight a. straight y over straight b minus square root of open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight x squared over straight a squared close parentheses end root close square brackets equals straight a

rightwards double arrow space space space space space fraction numerator straight x space straight y over denominator straight a space straight b end fraction minus square root of open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight x squared over straight a squared close parentheses end root equals cos space straight a space space space rightwards double arrow space space fraction numerator straight x space straight y over denominator straight a space straight b end fraction minus cos space straight a equals square root of open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight x squared over straight a squared close parentheses end root

rightwards double arrow space space space space open parentheses fraction numerator straight x space straight y over denominator straight a space straight b end fraction minus cos space straight a close parentheses squared equals open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight y squared over straight b squared close parentheses

rightwards double arrow space space space space fraction numerator straight x squared space straight y squared over denominator straight a squared space straight b squared end fraction minus fraction numerator 2 space straight x space straight y space over denominator straight a space straight b end fraction cos space straight a plus cos squared straight a equals 1 minus straight x squared over straight a squared minus straight y squared over straight b squared plus fraction numerator straight x squared space straight y squared over denominator straight a squared space straight b squared end fraction

rightwards double arrow space fraction numerator straight x squared space straight y squared over denominator straight a squared space straight b squared end fraction minus fraction numerator 2 space straight x space straight y over denominator straight a space straight b end fraction cos space straight a plus cos squared space straight a equals 1 minus straight x squared over straight a squared minus straight y squared over straight b squared plus fraction numerator bold x to the power of bold 2 bold space bold y to the power of bold 2 over denominator bold a to the power of bold 2 bold space bold b to the power of bold 2 end fraction

rightwards double arrow space space straight x squared over straight a squared minus fraction numerator 2 xy over denominator ab end fraction cos space straight a plus straight y squared over straight b squared equals 1 minus cos squared space straight a
rightwards double arrow space space space straight x squared over straight a squared minus fraction numerator 2 xy over denominator ab end fraction cos space straight a plus straight y squared over straight b squared equals sin squared space straight a
138 Views

Advertisement
97. If cos –1x + cos–1y + cos–1z = π prove that x2 + y2 + z2 + 2 x y z = 1.
3839 Views

98. If sin–1'x + sin–1 y + sin–1 z = π. show that

straight x square root of 1 minus straight x squared end root plus straight y square root of 1 minus straight y squared end root plus straight z square root of 1 minus straight z squared end root equals 2 space straight x space straight y space straight z
623 Views

Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

99. cos to the power of negative 1 end exponent open parentheses cos fraction numerator 7 space straight pi over denominator 6 end fraction close parentheses space is equal to
  • fraction numerator 7 straight pi over denominator 6 end fraction
  • fraction numerator 5 straight pi over denominator 6 end fraction
  • straight pi over 3
  • straight pi over 3
142 Views

100. sin open square brackets straight pi over 3 minus sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses close square brackets is equal to
  • 1 half
  • 1 third
  • 1 fourth
  • 1 fourth
162 Views

Advertisement