Prove the following:tan-113 + tan-115 + tan-1

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

111.

Write the value of open parentheses 2 tan to the power of negative 1 end exponent 1 fifth close parentheses

264 Views

112.

Find the value of the following:
tan 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets comma space open vertical bar straight x close vertical bar space less than 1 comma space space straight y greater than 0 space and space xy less than 1

218 Views

113.

Prove that tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 fifth close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses space equals straight pi over 4

179 Views

114.

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of the z-axis.

1682 Views

Advertisement
115.
695 Views

116.

Prove that 

597 Views

117.

Find the value of tan-1 3 - cot-1 (-3)


118.

Prove that:3 sin-1 x  = sin-1 (3x - 4x3), X  -12, 12


Advertisement
119.

Evaluate:   sinπ3 - sin-1 12


 Multiple Choice QuestionsLong Answer Type

Advertisement

120.

Prove the following:

tan-113 + tan-115 + tan-117 + tan-118


L.H.S. = tan-113 + tan-115 + tan-117 + tan-118             = tan-113 + 151 - 1315 + tan-117 + 181 - 1718             =  tan-15 + 31515 - 115 + tan-18 + 75656 - 156             =  tan-18151415 + tan-115565556             = tan-1814 + tan-11555             = tan-147 +  tan-1311             =  tan-147 + 3111 - 47311              =    tan-144 + 217777 - 1277              = tan-16565             =  tan-1 1 tanπ4             = π4   

           = R.H.S.

Hence proved.


Advertisement
Advertisement