Using principal value, evaluate the following: sin-1 sin3π5
Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2
To prove: sin-1 45 + sin-1 513 + sin-1 1665 = π2Let sin-1 45 =x⇒ sinx = 45⇒ cosx = 1 - sin2x = 35 sin-1 513 = y⇒ siny =513⇒ cosy = 1 - sin2y = 1213sin-1 1665 = z ⇒ sinz =1665⇒ cosz = 1 - sin2z = 6365tanx = 43, tany = 512, tanz = 1663tanz = 1663 ⇒ cotz = 6316 .........(i)
tan x + y = tan x + y 1-tanx.tany⇒ tan x + y = 43 + 5121 - 2036⇒ tan x + y = 6316⇒ tan x + y = cotz .......from equation (i)⇒ tan x + y = tan π2 - z ⇒ x + y = π2 - z⇒ x + y + z =π2∴ sin-1 45 + sin-1 513 + sin-1 1665 = π2
Solve for x: tan-1 3x + tan-1 2x = π4
What is the principal value of cos-1 -32 ?
Prove the following:
tan-1 x = 12 cos-1 1 - x1 + x , x∈ 0, 1
cos-1 1213 + sin-1 35 = sin-1 5665
Write the value of sin π3 - sin-1 - 12
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x = x2, x ∈ 0, π4
Find the value of tan-1 xy - tan-1 x - yx + y
Write the principal value of cos-1 12 - 2 sin-1 - 12 .