Using principal value, evaluate the following: sin-1 sin3π5
Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2
Solve for x: tan-1 3x + tan-1 2x = π4
What is the principal value of cos-1 -32 ?
Prove the following:
tan-1 x = 12 cos-1 1 - x1 + x , x∈ 0, 1
cos-1 1213 + sin-1 35 = sin-1 5665
Let a be in I quadrant such that
cos-1 1213 = aSo cos a = 1213⇒ sin a = 1 - 12132 = 1 - 144169 = 169 - 144169 = 25169 = 513And tan a = 512So, a = tan-1 512 .........(i)Again b∈I quadrant such that sin-1 35 = bSo, sin b = 35
⇒ cos b = 1 - 35 2 = 1 - 925 = 1625 = 45And tan b = 34so, b = tan-1 34 ...............(ii)Now, let sin-1 5665 = c where c is in I quadrantSo, sin c = 5665
⇒ cos c = 1 - 5665 2 = 1 - 31364225 = 4225 - 31364225 = 10894225 = 3365And, tan c = 5633So, c = tan-1 5633 ⇒ sin-1 5665 = tan-1 5633 ...........(iii)Now, we need to prove cos-1 1213 + sin-1 35 = sin-1 5665
consider a + b
= cos-1 1213 + sin-1 35 = tan-1 512 + tan-1 34 cos-1 1213 = tan-1 512 and sin-1 35 = tan-1 34 = tan-1 512 + 341 - 512 x 34 using, tan-1 x +tan-1 y = tan-1 x + y 1 - xy = tan -1 20 + 3648 - 15 = tan -1 5633 = c = sin-1 5665 using, eq, (iii)
Hence proved.
Write the value of sin π3 - sin-1 - 12
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x = x2, x ∈ 0, π4
Find the value of tan-1 xy - tan-1 x - yx + y
Write the principal value of cos-1 12 - 2 sin-1 - 12 .