Using principal value, evaluate the following: sin-1 sin3π5
Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2
Solve for x: tan-1 3x + tan-1 2x = π4
What is the principal value of cos-1 -32 ?
Prove the following:
tan-1 x = 12 cos-1 1 - x1 + x , x∈ 0, 1
cos-1 1213 + sin-1 35 = sin-1 5665
Write the value of sin π3 - sin-1 - 12
sin π3 - sin-1 - 12 Let sin-1 - 12 = x⇒ - 12 = sinx⇒ sinx = - sin π6 = sin -π6 = sin 2π - π6 ⇒ x = 2π - π6
∴ sin π3 - sin-1 - 12 = sin π3 - 2π - π6 = sin - 9π6 = - sin 3π2 = - sin π + π2 = - - sin π2 = + sin π2 = 1Thus, sin π3 - sin-1 - 12 = 1
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x = x2, x ∈ 0, π4
Find the value of tan-1 xy - tan-1 x - yx + y
Write the principal value of cos-1 12 - 2 sin-1 - 12 .