Using principal value, evaluate the following: sin-1 sin3π5
Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2
Solve for x: tan-1 3x + tan-1 2x = π4
What is the principal value of cos-1 -32 ?
Prove the following:
tan-1 x = 12 cos-1 1 - x1 + x , x∈ 0, 1
cos-1 1213 + sin-1 35 = sin-1 5665
Write the value of sin π3 - sin-1 - 12
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x = x2, x ∈ 0, π4
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x cot-1 sin2 x2 + cos2 x2 + sin 2 x2 + sin2 x2 + cos2 x2 - sin 2 x2 sin2 x2 + cos2 x2 + sin 2 x2 - sin2 x2 + cos2 x2 - sin 2 x2
Since, sin2 A + cos2 A = 1 = cot-1 sin2 x2 + cos2 x2 + 2 sin x2 cos x2 + sin2 x2 + cos2 x2 - 2 sin x2 cos x2 sin2 x2 + cos2 x2 + 2 sin x2 cos x2 - sin2 x2 + cos2 x2 - 2 sin x2 cos x2
[ Since, sin 2A = 2 sin A cos A ]
= cot -1 cos x2 + sin x2 2 + cos x2 - sin x2 2 cos x2 + sin x2 2 - cos x2 - sin x2 2 = cot -1 2 cos x22 sin x2 = cot -1 cot x2= x2
Hence proved.
Find the value of tan-1 xy - tan-1 x - yx + y
Write the principal value of cos-1 12 - 2 sin-1 - 12 .