Prove that tan- 1 cos x 1 + sin x = π4 - π2, x ∈ - π2, π2
Prove that sin- 1 817 + sin- 1 35 = cos- 1 3685 .
Let sin- 1 817 = x.Then, sin x =817; cos x = 1 - x2 ⇒ cos x = 1 - 817 2⇒ cos x = 225289⇒ cos x = 1517
∴ tan x = sin xcos x⇒ tan x = 8171517⇒ tan x = 815⇒ = x = tan- 1 815 ...........( i )Let sin- 1 35 = y ...........( ii )Then, sin y = 35; cos y = 1 - y2
⇒ cos y = 1 -352 ⇒ cos y = 1625 ⇒ cos y = 45∴ tan y = sin ycos y⇒ tan y = 3545⇒ tan y = 34⇒ y = tan- 1 34 ...............( iii )
From equation ( ii ) and ( iii ), we have,
sin- 1 35 = tan- 1 34 Now consider sin- 1 817 + sin- 1 35 :
From equation ( i ) and ( iii ), we have,
sin- 1 817 + sin- 1 35 = tan- 1 815 + tan- 1 34 = tan- 1 815 + 341 - 815 ×34 ....... ∵ tan- 1 x + tan- 1 y = tan- 1 x + y1 - xy = tan- 1 32 + 4560 - 24 sin- 1 817 + sin- 1 35 = tan- 1 7736 ........( iv )
Now, we have:
Let tan- 1 7736 = z.Then tan z = 7736⇒ sec z = 1 + 77362 ....... ∵ sec θ = 1 + tan2 θ ⇒ sec z = 1296 + 59291296⇒ sec z = 72251296⇒ sec z = 8536
We know that cos z = 1sec zThus, sec z = 8536, cos z = 3685⇒ z = cos- 1 3685 ⇒ tan- 1 7736 = cos- 1 3685⇒ sin- 1 817 + sin- 1 35 = cos- 1 3685 .......[ ∵ From equation ( iv ) ]
Hence proved.
In ∆ABC if θ is any angle, then bcosC + θ + ccosB - θ = ?
acotθ
acosθ
atanθ
asinθ
The number of solutions of the trigonometric equation 1 + cosx . cos5x = sin2x in [0, 2π] is
8
12
10
6
A value of θ for which is purely imaginary is
π/3
π/6
Consider f(x) = tan-1 . A normal to y = f (x) at x = π/6 also passes through the point
(0,0)
(0, 2π/3)
(π/6 ,0)
If 0≤x<2π, then the number of real values of x, which satisfy the equation cosx+cos2x+cos3x+cos4x=0, is :
3
5
7
4
2
Let where .Then, a value of y is
If y = sec (tan-1 x), then dy/dx at x = 1 is equal to
1