If cos-1x + cos-1y = 2π7, then the value of sin-1x + sin-1y is
4π7
3π7
2π7
5π7
If cos-1x > sin-1x, then x lies in the interval
(12, 1]
(0, 1]
[- 1, 12)
[- 1, 1]
The value of x satisfying the equation tan-1x + tan-123 + tan-174 is equal to
12
- 12
32
- 13
If tan-1x + tan-1y = 2π3, then cot-1x + cot-1y is equal to
π2
π3
If tan-1x + tan-1y + tan-1z = π then x + y + z is :
xyz
0
1
2xyz
If θ = sin-1sin- 600°, then one of the possible values of θ is :
2π3
- 2π3
Domain of the function f(x) = sin-1(log2(x))in the set of real numbers is :
x : 1 ≤ x ≤ 2
x : 1 ≤ x ≤ 3
x : - 1 ≤ x ≤ 2
x : 12 ≤ x ≤ 2
D.
We have, f(x)= sin-1 (log2(x))∴ - 1 ⩽ log2(x) ⩽ 1 ∵ - 1 ⩽ sin-1x ⩽ 1⇒ 2- 1 ⩽ x ⩽ 21⇒ 12 ⩽ x ⩽ 2∴ Domain of the function = x : 12 ⩽ x ⩽ 2.
Which one of the following is true?
sincos-1x = cossin-1x
sectan-1x = tansec-1x
costan-1x = tancos-1x
tansin-1x = sintan-1x
If tan-1a + tan-1b = sin-11 - tan-1c, then
a + b + c = abc
ab + bc + ca = abc
1a + 1b + 1c - 1abc = 0
ab + bc + ca = a + b + c
tan-1mn - tan-1m - nm + n is equal to :
π4
π8