The value of 0 . 16log2 . 513 + 132 + 133 + ... ∞ is
limx→aa + 2x13 - 3x133a + x13 - 4x13 a ≠ 0 = ?
292313
2343
2943
232913
Let f : 0, ∞ → 0, ∞ be a differentiable function such that f(1) = e and limt→x t2f2x - x2f2tt - x. If f(x) = 1, then x is equal to
1e
2e
12e
e
limx→0xe1 + x2 + x4 - 1/x - 11 + x2 + x4 - 1
does not exist
is equal to 1
is equal to e
is equal to 0
A limx→1∫0x - 12tcost2dtx - 1sinx - 1 = ?
1
12
- 12
If [x] denotes the greatest integer not exceeding x and if the function f defined by
fx = a + 2cosxx2, x< 0btanπx + 4, x ≥ 0
is continuous at x = 0, then the ordered pair(a, b) is equal to
(- 2, 1)
(- 2, - 1)
- 1, 3
- 2, 3
If y = 1 +x1 + x21 + x4 . . . 1 + x2n,then dydxx = 0 = ?
0
2
The quadratic equation whose roots are l and m,where l = limθ → 0 3sinθ - 4sin2θθ,m = limθ → 0 2tanθθ 1 - tan2θ is
x2 + 5x + 6
x2 - 5x + 6
x2 - 5x - 6
x2 + 5x - 6
limx→01 + 1 + x2 - 2x - 8 = ?
32
14
124
112
If cos-1x2 - y2x2 + y2 = k a constant, then dydx = ?
yx
xy
x2y2
y2x2
A.
Given, cos-1x2 - y2x2 + y2 = kx2 - y2x2 + y2 = coskOn differentiating w.r.t. x, we getx2 + y22x - 2ydydx - x2 - y22x + 2ydydx x2 + y22 = 0⇒ - 4x2ydydx + 4xy2 = 0⇒ dydx = yx