In ∆OAD,
∠OAD + ∠ODA + ∠AOD = 180°
| Angle sum property of a triangle
⇒ 80° + 50° + ∠AOD = 180°
⇒ 130° + ∠AOD = 180°
⇒ ∠AOD = 180° - 130° = 50°
⇒ ∠BOC = 50°
| ∵ ∠AOD = ∠BOC (Vertically opposite angles)
In ∆OBC,
∠BOC + ∠OCB + ∠OBC = 180°
| Angle sum property of a triangle ⇒ 50° + 40° + ∠OBC = 180°
⇒ 90° + ∠OBC = 180°
∠ ∠OBC = 180° - 90° = 90°