Important Questions of Matrices Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
521.

If a, b, c and d are real numbers such that a2 + b2 + c2 + d2 = 1 and A = a + idc + id- c + ida - ib, then A - 1 = ?

  • a +ib- c - id- c - ida - ib

  • a - ibc - id- c + ida + ib

  • a - ib- c - idc - ida + ib

  • a +idc + idc - ida - ib


522.

If the matrix A = 123024323213687α  is of rank 3, then α = ?

  • - 5

  • 5

  • 4

  • 1


523.

If k > 1 and the determinant of the matrix A2, where A = kα0α00k, is k2, then α = ?

  • 1k2

  • k

  • k2

  • 1k


524.

If A is a square matrix of order 3, then adj (adj A2) is equal to

  • A2

  • A4

  • A8

  • A16


Advertisement
525.

The system 2x + 3y + z = 5, 3x + y + 5z = 7 and x + 4y - 2z = 3 has

  • unique solution

  • finite number of solution

  • Infinite solutions

  • No solution


526.

If  = 1cosθ1- cosθ1cosθ- 1- cosθ1, then  lies in the interval

  • [2, 4]

  • (2, 4)

  • [1, 4]

  • [- 1, 1]


527.

If a, b, c are non-zero real numbers and if the equations (a - 1) x = y + z, (b - 1)y = z + x, (c - 1)z = x + y have a non-trivial solution, then ab + be + ca = ?

  • a2b2c2

  • 0

  • abc

  • a + b + c


528.

If a system of three linear equations in three unknowns, which is in the matrix equation form of AX = D, is in consistent, then rank of A/rank of AD is

  • Less than one

  • Greater than or equal to one

  • One

  • Greater than one


Advertisement
529.

Let A be a 2 × 2 real matrix with entries from {0, 1} and |A|  0. Consider the following two statements;

(P)If A  I2, then |A| = – 1

(Q)If |A| = 1, then tr(A) = 2

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then :

  • (P) is true and (Q) are false

  • Both (P) and (Q) are true

  • Both (P) and (Q) are false

  • (P) is false and (Q) is true


530.

Let A = {x = (x, y, z): PX = 0 and x2 + y2 + z2 = 1}, where 121 - 23 - 419 - 1 P then the set A

  • is a singleton

  • contains more than two elements

  • contains exactly two elements

  • is an empty set.


Advertisement