If l, m and n are real numbers such that l2 + m2 + n2 = 0, t

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

261.

If B is a non-singular matrix and A is a square matrix, then det (B-1AB) is equal to

  • det(A-1)

  • det(B-1)

  • det(A)

  • det(B)


262.

0ab04 = I, then

  • a = 1 = 2b

  • a = b

  • a = b2

  • ab = 1


263.

If Aθ = 1tanθ- tanθ1 and AB = I, then sec2θB is equal to :

  • Aθ

  • Aθ2

  • A- θ

  • A- θ2


264.

If the rank of the matrix - 1252- 4a - 41- 2a +1 is 1, then the value of a is :

  • - 1

  • 2

  • - 6

  • 4


Advertisement
Advertisement

265.

If l, m and n are real numbers such that l2 + m2 + n2 = 0, then

1 + l2lmlnlm1 + m2mnlnmn1 + n2 is equal to

  • 0

  • 1

  • l + m + n + 2

  • 2(l + m + n) + 3


B.

1

1 + l2lmlnlm1 + m2mnlnmn1 + n2= 1 + l21 + m2mnmn1 + n2 - lmlmmnln1 + n2 + lnlm1 +m2lnmn= 1 + l21 + m2 + n2 + m2n2 - m2n2 - lm (Im+ lmn2 - lmn2)     + ln(lm2n- ln - lm2n)= 1 + l21 + m2 + n2 - l2m2 - l2n2= 1 + m2 + n2 +  l2 + l2m2 + l2n2 -  l2m2 -  l2n2= 1 + m2 + n2 + l2= 1                 l2 + m2 + n2 = 0


Advertisement
266.

If f (x) = x2 + 4x - 5 and A = 124- 3, then f(A) is equal to

  • 0- 488

  • 2120

  • 1110

  • 8480


267.

α- β00αββ0α = 0, then

  • αβ is one of the cube roots of unity

  • α is one of the cube roots of unity

  • β is one of the cube roots of unity

  • αβ is one of the cube roots of unity 


268.

The coefficient of x in

fx = x1 + sinxcosx1log1 + x2x21 + x20, - 1 < x  1, is

  • 1

  • - 2

  • - 1

  • 0


Advertisement
269.

If x3636x6x3 = 2x7x7272x = 45x5x4x45 = 0, then x is equal to

  • 9

  • - 9

  • 0

  • - 1


270.

If w be the complex cube root of unity and matrix H = w00w, then H70 is equal to

  • 0

  • - H

  • H

  • H2


Advertisement