The number of 3 x 3 matrices with entries - 1 or + 1 is fro

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

311.

The number of 3 x 3 matrices with entries - 1 or + 1 is

  • 2-4

  • 25

  • 26

  • 29


D.

29

In 3 x 3 matrix, total number of elements

= 3 × 3= 9 Total number of 3 × 3 matrices with enteries either - 1 or 1= 29


Advertisement
312.

The value of a for which the matrix A = a224 is singular :

  • a  1

  • a = 1

  • a = 0

  • a = - 1


313.

If A = 2- 1- 12 and I is the unit matrix of order two, then A2 is equal to :

  • 4A - 3I

  • 3A - 4I

  • A - I

  • A + I


314.

If A and B are two square matrices of the same order, then (A - B)2 :

  • A2 - AB - BA + B2

  • A2 - 2AB + B2

  • A2 - 2BA + B2

  • A2 - B2


Advertisement
315.

If P = i0- i0- ii- ii0 and Q = - ii00i- i, then PQ is equal to

  • - 221- 11- 1

  • 2- 2- 11- 11

  • 2- 2- 11

  • 100010001


316.

For what value of λ the system of equations x + y + z = 6, x + 2y + 3z = 10, x + 2y + λz = 10 is consistent ?

  • 1

  • 2

  • - 1

  • 3


317.

If a = 1 + 2 + 4 + ... to n terms, b = 1 + 3 + 9 + ... to n terms and c = 1 + 5 + 25 + ... to n terms, then

a2b4c2222n3n5n equals :

  • (30)n

  • (10)n

  • 0

  • 2n + 3n + 5n


318.

The matrix 5103- 2- 46- 1- 2b is a singular matrix, if b is equal to :

  • - 3

  • 3

  • 0

  • for any value of b


Advertisement
319.

For non-singular square matrices A, B and C of the same order, (AB-1C)-1 is equal to :

  • A-1BC-1

  • C-1B-1A-1

  • CBA-1

  • C-1BA-1


320.

Let A = cos2θsinθcosθcosθsinθsin2θ and B = cos2ϕsinθcosϕcosϕsinϕsin2ϕ, then AB = 0 if :

  • θ = , n = 0, 1, 2, ...

  • θ + ϕ = , n = 0, 1, 2, ...

  • θ = ϕ + 2n + 1π2, n = 0, 1, 2, ...

  • θ = ϕ + nπ2, n = 0, 1, 2, ...


Advertisement