Let A, B and C be n x n matrices. Which one of the following is a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

391.

If A = 685423971 is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is :

  • 667625751

  • 02- 2- 25- 2220

  • 667- 62- 5- 751

  • 06- 220- 2- 2- 20


392.

If A = 1111, then A100 is equal to

  • 2100A

  • 299A

  • 100A

  • 299A


393.

If 1111- 2- 2131xyz = 034, then xyz is equal to :

  • 011

  • 12- 3

  • 5- 21

  • 1- 23


394.

If A and B are 2 x 2 matrices, then which of the following is true ?

  • (A + B)2 = A2 + B2 + 2AB

  • (A - B)2 = A2 + B2 - 2AB

  • (A - B)(A + B) = A2 + AB - BA - B2

  • (A - B)(A + B) = A2 - B2


Advertisement
395.

If w is an imaginary root of unity, then the abw2awbwcbw2cw2awc is :

  • a3 + b3 + c3

  • a2b - b2c

  • 0

  • a3 + b3 + c3 - 3abc


396.

If A = {x, y}, then the power set of A is :

  • {xy, yx}

  • ϕ, x, y

  • ϕ, x, 2y

  • ϕx, y, x, y


Advertisement

397.

Let A, B and C be n x n matrices. Which one of the following is a correct statement?

  • If AB = AC, then B = C

  • If A3 + 2A2 + 3A + 51 = 0, then A is invertible

  • If A2 = 0,then A = 0

  • None of these


B.

If A3 + 2A2 + 3A + 51 = 0, then A is invertible

Given A, B, C are n x n matrices.Since, A satisfies x3 + 2x2 + 3x + 5 = 0as  A3 + 2A2 + 3A 2+ 5I = 0 A must be invertible.


Advertisement
398.

If A = 2454810- 6- 12- 15, then rank of A is equal to :

  • 0

  • 1

  • 2

  • 3


Advertisement
399.

What must be the matrix X if 2X + 1234 = 3872 ?

  • 132- 1

  • 1- 32- 1

  • 264- 2

  • 2- 64- 2


400.

Inverse of the matrix cos2θ- sin2θsin2θcos2θ is

  • cos2θ- sin2θsin2θcos2θ

  • cos2θsin2θsin2θ- cos2θ

  • cos2θsin2θsin2θcos2θ

  • cos2θsin2θ- sin2θcos2θ


Advertisement