Obtain all other zeroes of 3x4 + 6x3 – 2x2 - 10x - 5, if tw

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

341. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :
p(x) = x
4 – 5x + 6,      g(x) = 2 – x2.
166 Views

342. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm.
t2 – 3,  2t4 + 3t3 – 2t2–9t – 12
204 Views

343. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm.
x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
169 Views

344. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm.
x3 – 3x + 1, x5 –4x3 + x2 + 3x + 1.
128 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

345. Obtain all other zeroes of 3x4 + 6x3 – 2x- 10x - 5, if two of its zerores are square root of 5 over 3 end root space and space minus square root of 5 over 3 end root.


Let <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre> and straight alpha space equals space square root of 5 over 3 end root comma space space space space straight beta space equals space minus square root of 5 over 3 end root
∵         square root of 5 over 3 end root space and space minus square root of 5 over 3 end root are zeroes of  p(x), then 
        open parentheses straight x minus square root of 5 over 3 end root close parentheses open parentheses straight x plus square root of 5 over 3 end root close parentheses equals open parentheses straight x squared minus 5 over 3 close parentheses is a factor of p(x).
       Now by applying division algorithm:
   
Let  and ∵          are zeroes of  p(x), then       ?
Therefore. the zeroes of the given fourth degree polynomial p(x) are
             <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

475 Views

Advertisement
346. On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder, are x – 2 and –2x + 4, respectively. Find g(x). 
275 Views

 Multiple Choice QuestionsShort Answer Type

347. Give examples of polynomials p(x),g(x), q(x) and r(x), which satisfy the division algorithm and
        deg p(x) = deg q(x)
90 Views

348. Give examples of polynomials p(x),g(x), q(x) and r(x), which satisfy the division algorithm and
         deg r(x) = 0
126 Views

Advertisement
349. Give examples of polynomials p(x),g(x), q(x) and r(x), which satisfy the division algorithm and
       deg q(x) = deg r(x)
102 Views

 Multiple Choice QuestionsLong Answer Type

350. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also, verify the relationship between the zeroes and coefficients in each case:
2x+ x–5x + 2; 1/2, 1,–2 
166 Views

Advertisement