If α and β are the zeroes of the quadratic polynomial ax2 + b

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

421. Find a quadratic polynomial whose zeroes are 1 and (-3). Verify the relation between the coefficients and zeroes of the polynomial.
2920 Views

422. Find the zeroes of the quadratic polynomial 4x2 – 4x – 3 and verify the relation between the zeroes and its coefficients.
3023 Views

423. If α and β are the zeroes of the polynomial ax2 + bx + c then find
(a)      straight alpha over straight beta plus straight beta over straight alpha             (b)   space space straight alpha squared plus straight beta squared

152 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

424.

If α and β are the zeroes of the quadratic polynomial ax2 + bx + c. Find the value of α2– β2.


Since, α and β are the zeroes of the quadratic polynomial ax2 + bx + c, then
                       space space space space space straight alpha plus straight beta equals fraction numerator negative straight b over denominator straight a end fraction space and space straight alpha. space straight beta space equals space straight c over straight a
Now,
     straight alpha squared minus straight beta squared space equals space left parenthesis straight alpha plus straight beta right parenthesis space left parenthesis straight alpha minus straight beta right parenthesis
               space space space space equals left parenthesis straight alpha plus straight beta right parenthesis space square root of left parenthesis straight alpha plus straight beta right parenthesis squared minus 4 αβ end root
                   equals open parentheses fraction numerator negative straight b over denominator straight a end fraction close parentheses square root of open parentheses fraction numerator negative straight b over denominator straight a end fraction close parentheses squared minus 4 cross times straight c over straight a end root             
   equals space space open parentheses fraction numerator negative straight b over denominator straight a end fraction close parentheses square root of straight b squared over straight a squared minus fraction numerator 4 straight c over denominator straight a end fraction end root
 space space space equals space fraction numerator negative straight b over denominator straight a end fraction square root of fraction numerator straight b squared minus 4 ac over denominator straight a squared end fraction end root equals fraction numerator negative straight b square root of straight b squared minus 4 ac end root over denominator straight a squared end fraction.
                           
145 Views

Advertisement
Advertisement
425. If α and β are the zeroes of the quadratic polynomial ax2 + bx + c, then find the value of α3 + β3.
129 Views

 Multiple Choice QuestionsLong Answer Type

426. If α and β are the zeroes of quadratic polynomial ax2 + bx + c, then find straight alpha squared over straight beta plus straight beta squared over straight alpha.
134 Views

427. If α and β are the zeroes of the quadratic polynomial P(x) = Kx2 + 4x + 4 such that α2 + β2 = 24, find the value of K.
433 Views

 Multiple Choice QuestionsShort Answer Type

428. If α and β are the zeroes of quadratic polynomial x2 + x – 2. Find the value of (α–1 + β–1).
107 Views

Advertisement
429. Find a quadratic polynomial when the sum and product of its zeroes respectively
(i)  space 1 fourth comma space minus 1                  (ii)    square root of 2 comma space fraction numerator negative 1 over denominator 3 end fraction
152 Views

 Multiple Choice QuestionsLong Answer Type

430. If α, β are the zeroes of the quadratic polynomial 2x2– 3x – 5, form a polynomial whose zeroes are 2α + 1 and 2β + 1.
213 Views

Advertisement