Find a quadratic polynomial when the sum and product of its zero

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

421. Find a quadratic polynomial whose zeroes are 1 and (-3). Verify the relation between the coefficients and zeroes of the polynomial.
2920 Views

422. Find the zeroes of the quadratic polynomial 4x2 – 4x – 3 and verify the relation between the zeroes and its coefficients.
3023 Views

423. If α and β are the zeroes of the polynomial ax2 + bx + c then find
(a)      straight alpha over straight beta plus straight beta over straight alpha             (b)   space space straight alpha squared plus straight beta squared

152 Views

 Multiple Choice QuestionsShort Answer Type

424.

If α and β are the zeroes of the quadratic polynomial ax2 + bx + c. Find the value of α2– β2.

145 Views

Advertisement
425. If α and β are the zeroes of the quadratic polynomial ax2 + bx + c, then find the value of α3 + β3.
129 Views

 Multiple Choice QuestionsLong Answer Type

426. If α and β are the zeroes of quadratic polynomial ax2 + bx + c, then find straight alpha squared over straight beta plus straight beta squared over straight alpha.
134 Views

427. If α and β are the zeroes of the quadratic polynomial P(x) = Kx2 + 4x + 4 such that α2 + β2 = 24, find the value of K.
433 Views

 Multiple Choice QuestionsShort Answer Type

428. If α and β are the zeroes of quadratic polynomial x2 + x – 2. Find the value of (α–1 + β–1).
107 Views

Advertisement
Advertisement

429. Find a quadratic polynomial when the sum and product of its zeroes respectively
(i)  space 1 fourth comma space minus 1                  (ii)    square root of 2 comma space fraction numerator negative 1 over denominator 3 end fraction


(i) Here, we have,
      straight alpha plus straight beta equals 1 fourth space and space straight alpha. straight beta equals negative 1
So, required quadratic polynomials
K {x2 –(α + β)x + α. β}
     <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

(ii) Here we have,
         straight alpha plus straight beta equals square root of 2 space space and space space straight alpha. straight beta space equals space fraction numerator negative 1 over denominator 3 end fraction
So, required quadratic polynomial be
    straight K left curly bracket straight x squared minus left parenthesis straight alpha plus straight beta right parenthesis straight x plus straight alpha. straight beta right curly bracket
 = straight K open curly brackets straight x squared minus square root of 2 straight x minus 1 third close curly brackets
152 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

430. If α, β are the zeroes of the quadratic polynomial 2x2– 3x – 5, form a polynomial whose zeroes are 2α + 1 and 2β + 1.
213 Views

Advertisement