Find all the zeros of the polynomial x4 + x3 – 34x2 – 4x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

431. If α, β are the zeroes of quadratic polynomial 2x2 – 3x – 5, form a quadratic polynomial whose zeroes are α2 and β2.
397 Views

432. If α, β are the zeroes of quadratic poly-nomial x2 – 3x + 2, form a quadratic polynomial whose roots are –α and –β.
161 Views

433. If α, β are the zeroes of quadratic polynomial x2 – 3x – 1, form a quadratic polynomial whose roots are 1 over straight alpha squared comma space 1 over straight beta squared.
122 Views

434. Factorize 2x4 + x3 – 14x2 – 19x – 6 by x2 + 3x + 2 and verify the division algorithm.
163 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

435. Find all the zeroes of the polynomial x3 + 3x2 – 2x – 6, if two of its zeroes are – <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
1188 Views

436. Find all the zeroes of the polynomial 2a3 + x2 – 6x – 3, if two of its zeroes are - square root of 3 space and space square root of 3.
230 Views

437. If the polynomial 6x4+8x3 + 17x2 + 21x + 7 is divided by another polynomial 3x24x +1, the remainder comes out to be (ax + b), find a and b.
2132 Views

438. If the polynomial x3 + 2x3 + 8x2 + 12x + 18 is divided by another polynomial x2 + 5, the remainder comes out to be px + q. Find the values of p and q.
211 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

439. Find all the zeroes of 2x4 – 9x3 + 5x2 + 3x– 1, if two of its zeroes are 2 plus square root of 3 space and space 2 minus square root of 3.
21071 Views

Advertisement

440. Find all the zeros of the polynomial x4 + x3 – 34x2 – 4x + 120, if two of its zeroes are 2 and (–2). 


Since, two zeros are 2 and (–2),
(x – 2) (x +2) = x2 – 4 is a factor of the given polynomial.
Now, we divide the given polynomial by x2 – 4.

Since, two zeros are 2 and (–2),(x – 2) (x +2) = x2 – 4 is a f
∴  straight x to the power of 4 plus straight x cubed minus 34 straight x squared minus 4 straight x plus 120 space equals space left parenthesis straight x squared minus 4 right parenthesis thin space left parenthesis straight x squared plus straight x minus 30 right parenthesis
Now, x2 + x – 30 = x2 + 6x – 5x – 30
= x (x + 6) – 5 (x + 6) = (x + 6)(x-5) So, its zeroes are given by x = – 6 and x = 5. Hence, the zeros of the given polynomial are : 2, (–2), (–6) and 5. 

2997 Views

Advertisement
Advertisement