2y3 + y2 - 2y - 1
Let p(y) = 2y3 + y2 - 2y - 1
By trial, we find that
p(1) = 2(1)3 + (1)2 - 2(1) - 1
= 2 + 1 - 2 - 1 = 0
∴ By Factor Theorem, (y - 1) is a factor of p(y).
Now,
2y3 + y2 - 2y - 1
= 2y2(y - 1) + 3y(y - 1) + 1(y - 1)
= (y - 1)(2y2 + 3y + 1)
= (y - 1)(2y2 + 2y + y+ 1)
= (y - 1){2y(y + 1) + 1(y + 1)}
= (y - 1)(y + 1) (2y + 1).