Factorise each of the following:
We know that(x - y)3 = x3 - y3 - 3xy(x - y)| Using Identity VII⇒ x3 - y3 = (x - y)3 + 3xy(x - y)x3 - y3 = (x - y){(x - y)2 + 3xy}⇒ x3 - y3 = (x - y)(x2 - 2xy + y2 + 3ry)| Using Identity IV⇒ x3 - y3 = (x - y)(x2 + xy + y2).