Use principle of mathematical induction to prove that: from Mat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

1.

Use principle of mathematical induction to prove that:

1 space plus space 2 space plus space 3 space plus space... space plus space straight n space equals space fraction numerator straight n left parenthesis straight n space plus space 1 right parenthesis over denominator 2 end fraction


Let P(n): 1 + 2 + 3 + ......... + n = space space fraction numerator straight n left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction

I. For n = 1,

    P(1) : 1 = fraction numerator 1 left parenthesis 1 plus 1 right parenthesis over denominator 2 end fraction rightwards double arrow space 1 space equals space 1 space rightwards double arrow space space straight P left parenthesis 1 right parenthesis is true.

II.  Suppose the statement is true for n = m, straight m element of straight N

      i.e. P(m): 1 plus 2 plus 3 plus........ space plus straight m space equals space fraction numerator straight m left parenthesis straight m plus 1 right parenthesis over denominator 2 end fraction          ....(i)

III.    For n = m + 1,

        P(m + 1): 1 + 2 + 3 + ........ + (m + 1) = fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction

or  [1 + 2 + 3 + ...... + m] + (m + 1) = fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction
                                       
                                         [From (i), 1 + 2 + 3 + ...... + m = fraction numerator straight m left parenthesis straight m plus 1 right parenthesis over denominator 2 end fraction]

∴        P (m + 1): space fraction numerator straight m left parenthesis straight m space plus space 1 right parenthesis over denominator 2 end fraction space plus space left parenthesis straight m space plus space 1 right parenthesis space equals space fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction

rightwards double arrowspace space left parenthesis straight m plus 1 right parenthesis open parentheses straight m over 2 plus 1 close parentheses space equals space fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction

rightwards double arrow   left parenthesis straight m plus 1 right parenthesis open parentheses fraction numerator straight m plus 2 over denominator 2 end fraction close parentheses space equals space fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction

rightwards double arrowfraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction space equals space fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction

    which is true

∴    P(m + 1) is true

∴    P(m) is true rightwards double arrow P(m + 1) is true

Hence, by mathematical induction

P(n) is true for all space space straight n element of straight N.


      

761 Views

Advertisement
2.

Prove the following by using the principle of mathematical induction for all straight n space element of space straight N colon

1 cubed plus 2 cubed plus 3 cubed plus space... space plus space straight n cubed space equals space open square brackets fraction numerator straight n left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction close square brackets squared

596 Views

3.

Prove the following by using the principle of mathematical induction for all straight n element of straight N:

1 plus 3 plus 3 squared plus....... space plus 3 to the power of straight n minus 1 end exponent space equals space fraction numerator 3 to the power of straight n minus 1 over denominator 2 end fraction

398 Views

4.

Prove the following by using the principle of mathematical induction for all straight n element of straight N:

<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

376 Views

Advertisement
5.

Prove the following by using the principle of mathematical induction for all straight n element of straight N.

fraction numerator 1 over denominator 3.5 end fraction space plus space fraction numerator 1 over denominator 5.7 end fraction space plus space fraction numerator 1 over denominator 7.9 space end fraction space plus space......... space plus space fraction numerator 1 over denominator left parenthesis 2 straight n plus 1 right parenthesis left parenthesis 2 straight n plus 3 right parenthesis end fraction space equals space fraction numerator straight n over denominator 3 space left parenthesis 2 straight n space plus space 3 right parenthesis end fraction

329 Views

6.

Prove the following by principle of mathematical induction for all straight n element of straight N:

<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>




226 Views

7.

Prove the following by using the principle of mathematical induction for allspace space space space straight n element of straight N.

<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>.

221 Views

8.

Prove the following by using the principle of mathematical induction for all space space straight n element of straight N.

1.3 space plus space 2.3 squared space plus space 3.3 cubed space plus space........ space plus space straight n.3 to the power of straight n space equals space fraction numerator left parenthesis 2 straight n minus 1 right parenthesis space 3 to the power of straight n plus 1 end exponent space plus space 3 over denominator 4 end fraction


189 Views

Advertisement
9.

Prove the following by using the principle of mathematical induction for all straight n element of straight N colon

space space 1 plus fraction numerator 1 over denominator 1 plus 2 end fraction plus fraction numerator 1 over denominator 1 plus 2 plus 3 end fraction plus....... plus fraction numerator 1 over denominator 1 plus 2 plus 3 plus........ plus straight n end fraction space equals space fraction numerator 2 straight n over denominator straight n plus 1 end fraction

173 Views

10.

Prove the following by using the principle of mathematical induction for all space space straight n element of straight N.

1 plus 3 plus 5 plus........... space plus space left parenthesis 2 straight n minus 1 right parenthesis space equals space straight n squared

276 Views

Advertisement