Prove the following by using the principle of mathematical induc

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

1.

Use principle of mathematical induction to prove that:

1 space plus space 2 space plus space 3 space plus space... space plus space straight n space equals space fraction numerator straight n left parenthesis straight n space plus space 1 right parenthesis over denominator 2 end fraction

761 Views

Advertisement

2.

Prove the following by using the principle of mathematical induction for all straight n space element of space straight N colon

1 cubed plus 2 cubed plus 3 cubed plus space... space plus space straight n cubed space equals space open square brackets fraction numerator straight n left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction close square brackets squared


Let straight P left parenthesis straight n right parenthesis space colon space 1 cubed plus 2 cubed plus 3 cubed plus..... plus straight n cubed space equals space open square brackets fraction numerator straight n left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction close square brackets squared

I.      For n = 1,
       straight P left parenthesis 1 right parenthesis colon space 1 cubed space equals space open square brackets fraction numerator 1 left parenthesis 1 plus 1 right parenthesis over denominator 2 end fraction close square brackets squared space rightwards double arrow 1 space equals space 1 space rightwards double arrow space straight P left parenthesis 1 right parenthesis is true.

II.    Suppose the statement is true for n = m, straight m space element of space straight N
   
          i.e., "<pre    ... (i)

III.     For n = m + 1,

        straight P left parenthesis straight m plus 1 right parenthesis colon space 1 cubed plus 2 cubed plus 3 cubed plus......... plus left parenthesis straight m plus 1 right parenthesis cubed space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared

or     left square bracket 1 cubed space plus space 2 cubed space plus space 3 cubed space plus space....... space plus space straight m cubed right square bracket space plus space left parenthesis straight m plus 1 right parenthesis cubed space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared

     From (i), 1 cubed plus 2 cubed plus 3 cubed plus space............ space plus space straight m cubed space equals space open square brackets fraction numerator straight m left parenthesis straight m plus 1 right parenthesis over denominator 2 end fraction close square brackets squared

∴   space space straight P left parenthesis straight m plus 1 right parenthesis space colon space open square brackets fraction numerator straight m left parenthesis straight m plus 1 right parenthesis over denominator 2 end fraction close square brackets squared space plus space left parenthesis straight m plus 1 right parenthesis cubed space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared

rightwards double arrow space space left parenthesis straight m plus 1 right parenthesis squared space open square brackets straight m squared over 4 plus left parenthesis straight m plus 1 right parenthesis close square brackets space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared

rightwards double arrow space space space left parenthesis straight m plus 1 right parenthesis squared open parentheses fraction numerator straight m squared plus 4 straight m plus 4 over denominator 4 end fraction close parentheses space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared

rightwards double arrow space space space fraction numerator left parenthesis straight m plus 1 right parenthesis squared left parenthesis straight m plus 2 right parenthesis squared over denominator 4 end fraction space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared space rightwards double arrow space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared space equals space open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis over denominator 2 end fraction close square brackets squared

       which is true

∴     P(m + 1) is true

∴     P(m) is true rightwards double arrow P(m + 1) is true.

Hence, by mathematical induction, P(n) is true for all straight n element of space straight N.




596 Views

Advertisement
3.

Prove the following by using the principle of mathematical induction for all straight n element of straight N:

1 plus 3 plus 3 squared plus....... space plus 3 to the power of straight n minus 1 end exponent space equals space fraction numerator 3 to the power of straight n minus 1 over denominator 2 end fraction

398 Views

4.

Prove the following by using the principle of mathematical induction for all straight n element of straight N:

<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

376 Views

Advertisement
5.

Prove the following by using the principle of mathematical induction for all straight n element of straight N.

fraction numerator 1 over denominator 3.5 end fraction space plus space fraction numerator 1 over denominator 5.7 end fraction space plus space fraction numerator 1 over denominator 7.9 space end fraction space plus space......... space plus space fraction numerator 1 over denominator left parenthesis 2 straight n plus 1 right parenthesis left parenthesis 2 straight n plus 3 right parenthesis end fraction space equals space fraction numerator straight n over denominator 3 space left parenthesis 2 straight n space plus space 3 right parenthesis end fraction

329 Views

6.

Prove the following by principle of mathematical induction for all straight n element of straight N:

<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>




226 Views

7.

Prove the following by using the principle of mathematical induction for allspace space space space straight n element of straight N.

<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>.

221 Views

8.

Prove the following by using the principle of mathematical induction for all space space straight n element of straight N.

1.3 space plus space 2.3 squared space plus space 3.3 cubed space plus space........ space plus space straight n.3 to the power of straight n space equals space fraction numerator left parenthesis 2 straight n minus 1 right parenthesis space 3 to the power of straight n plus 1 end exponent space plus space 3 over denominator 4 end fraction


189 Views

Advertisement
9.

Prove the following by using the principle of mathematical induction for all straight n element of straight N colon

space space 1 plus fraction numerator 1 over denominator 1 plus 2 end fraction plus fraction numerator 1 over denominator 1 plus 2 plus 3 end fraction plus....... plus fraction numerator 1 over denominator 1 plus 2 plus 3 plus........ plus straight n end fraction space equals space fraction numerator 2 straight n over denominator straight n plus 1 end fraction

173 Views

10.

Prove the following by using the principle of mathematical induction for all space space straight n element of straight N.

1 plus 3 plus 5 plus........... space plus space left parenthesis 2 straight n minus 1 right parenthesis space equals space straight n squared

276 Views

Advertisement