Prove the following by using the principle of mathematical induction for all
Let P(n):
I.        For n = 1,
          P(1) : 1 =
∴        P(1) is true
II.       Let the statement be true for n = m,
    P(m) : 1 + 3 + 5 + .................... + (2m - 1) = m2                   ...(i)
III.     For n = m + 1,
        P(m + 1) : 1 + 3 + 5 + .......... + [2 (m+1) - 1] = (m + 1)2
or     1 + 3 + 5 + ........... + (2m - 1) + (2m + 1) = (m + 1)2
       From (i),
       Â
∴      Â
  Â
∴      P (m + 1) is true.
∴      P(m) is true. is true.
        Hence, by the principal of mathematical induction, P(n) is true for all