Using principle of mathematical induction, show that from Math

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

21.

Using principle of mathematical induction, prove that

cos space straight alpha space space cos space 2 straight alpha space space cos space 4 straight alpha space............... cos left parenthesis 2 to the power of straight n minus 1 end exponent straight alpha right parenthesis space equals space fraction numerator sin space 2 to the power of straight n straight alpha over denominator 2 to the power of straight n sinα end fraction for all straight n space element of space straight N

161 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

22.

Using principle of mathematical induction, show that straight n less than 2 to the power of straight n space space for space all space straight n space element of space straight N


Let P(n): space space straight n less than 2 to the power of straight n

I.     For n = 1, straight P left parenthesis 1 right parenthesis colon space 1 space less than space 2 to the power of 1 rightwards double arrow space 1 space less than space 2

∴    P(1) is true

II.    Suppose the statement P(n) is true for n = m, straight m space element of space straight N.

∴     P(m) : straight m less than 2 to the power of straight m comma space space straight m space element of space straight N                                                 ...(i)

III.   For n = m + 1,

       straight P left parenthesis straight m space plus space 1 right parenthesis colon space straight m space plus space 1 space less than 2 to the power of straight m plus 1 end exponent                                             ...(ii)

       From (i), space space straight m less than 2 to the power of straight m

rightwards double arrow  space space 2. straight m less than 2 to the power of straight m.2 space rightwards double arrow space 2 straight m less than 2 to the power of straight m plus 1 end exponent rightwards double arrow space straight m plus straight m less than 2 to the power of straight m plus 1 end exponent                 ...(iii)

       But 1 less or equal than straight m comma space space straight m space element of space straight N                                                      ... (iv)

       Adding (iii) and (iv), we get

       <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

∴     P (m+1) is true

∴     P(m) is true rightwards double arrowP (m + 1) is true

Hence, P(n) is true for all straight n element of space straight N.

147 Views

Advertisement
23.

Using principle of mathematical induction, show that  3 to the power of straight n greater than 2 to the power of straight n for all straight n space element of space straight N


152 Views

 Multiple Choice QuestionsMultiple Choice Questions

24.

If the number of terms in the expansion of open parentheses 1 minus 2 over straight x space plus 4 over straight x squared close parentheses to the power of straight n comma straight x not equal to 0 comma is 28, then the sum of the coefficients of all the terms in this expansion is

  • 64

  • 2187

  • 243

  • 243

392 Views

Advertisement
25.

Statement − 1: For every natural number n ≥ 2 fraction numerator 1 over denominator square root of 1 end fraction space plus space fraction numerator 1 over denominator square root of 2 end fraction space plus space..... space plus space fraction numerator 1 over denominator square root of straight n end fraction space greater than space square root of straight n

Statement −2: For every natural number n ≥ 2,straight n greater or equal than 2 comma space square root of straight n left parenthesis straight n plus 1 right parenthesis space end root space less than space straight n plus 1

  • Statement −1 is false, Statement −2 is true

  • Statement −1 is true, Statement −2 is true, Statement −2 is a correct explanation for Statement −1

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

125 Views

26.

If A = open square brackets table row 1 0 row 1 1 end table close square brackets and I = open square brackets table row 1 0 row 0 1 end table close square brackets , then which one of the following holds for all n ≥ 1, by the principle of mathematical induction

  • An = nA – (n – 1)I

  • An = 2n-1A – (n – 1)I

  • An = nA + (n – 1)I

  • An = nA + (n – 1)I

131 Views

27.

Let S(K) = 1 +3+5+..... (2K-1) = 3+K2. Then which of the following is true?

  • S(1) is correct

  • Principle of mathematical induction can be used to prove the formula

  • S(K) ≠S(K+1)

  • S(K) ≠S(K+1)

158 Views

28.

Maximum sum of coefficient in the expansion of (1 – x sinθ + x2 )n is

  • 1

  • 2n

  • 3n

  • 3n

126 Views

Advertisement
29.

For positive integer n, n3 + 2n is always divisible by

  • 3

  • 7

  • 5

  • 6


30.

The acceleration of a particle starting from rest moving in a straight line with uniform acceleration is 8 m/s2. The time taken by the particle to move the second metre is

  • (√2-1)/2 S

  • (√2+1)/2 S

  • (1 + √2)S

  • (√2-1)S


Advertisement