Out of 15 persons 10 can speak Hindi and 8 can speak English. If

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1161.

If X follows a binomial distribution with parameters n = 100 and p = 13 then P(X = r) 3 is maximum when r is equal to

  • 16

  • 32

  • 33

  • none of these


1162.

A random variable X takes values 0, 1, 2, 3, ... with probability P(X = x) = k(x + 1)15x, where k is constant, then P(X = 0) is

  • 7/25

  • 18/25

  • 13/25

  • 16/25


Advertisement

1163.

Out of 15 persons 10 can speak Hindi and 8 can speak English. If two persons are chosen at random, then the probability that one person speaks Hindi only and the other speaks both Hindi and English is

  • 3/5

  • 7/12

  • 1/5

  • 2/5


C.

1/5

Total number of persons = 15

Number of persons who can speak Hindi = 10

Number of persons who can speak English = 8

and number of persons who can speak Hindi and English both = 10 + 8 - 15 = 3

 Required probability = C17 × C13C115                                     = 7 × 315 × 142 = 15


Advertisement
1164.

A random variable X has the following probability distribution
X = x1 1 2 3 4
P(X = x1) 0.1 .02 0.3 0.4

The mean and the standard deviation are respectively

  • 3 and 2

  • 3 and 1

  • 3 and 3

  • 2 and 1


Advertisement
1165.

The probability distribution of a random variable X is given as
x - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
P(X = x) p 2p 3p 4p 5p 7p 8p 9p 10p 11p 12p

Then, the value of p is

  • 172

  • 373

  • 572

  • 174


1166.

If n(A) = 43, n(B) = 51 and n(A ∪ B) = 75, then n[(A - B) (B - A)] is equal to

  • 53

  • 45

  • 56

  • 66


1167.

If five dices are tossed, then what is the probability that the five numbers shown will be different?

  • 554

  • 518

  • 527

  • 581


1168.

If the events A and B are independent and if PA = 23, PB = 27, then PA  B is equal to

  • 421

  • 321

  • 521

  • 221


Advertisement
1169.

Two fair dice are rolled. Then, the probability of getting a composite number as the sum of face values is equal to

  • 712

  • 512

  • 112

  • 34


1170.

Let S be the set of all 2 x 2 symmetric matrices whose entries are either zero or one. A matrix X is chosen from S. The probability that the determinant of X is not zero is

  • 1/3

  • 1/2

  • 3/4

  • 1/4


Advertisement