27.
Find the roots of the following quadratic equations, if they exist by the method of completing the square:
2x2+x+ 4 = 0.
![space space 2 straight x squared plus straight x plus 4 space equals space 0
space space rightwards double arrow space space space space space straight x squared plus 1 half straight x plus 2 space equals space 0 space space space space space left square bracket Dividing space by space 2 right square bracket](/application/zrc/images/qvar/MAEN10041554.png)
![rightwards double arrow](/application/zrc/images/qvar/MAEN10041554-1.png)
     Â
![space space space open curly brackets straight x squared plus 2. straight x.1 fourth plus open parentheses 1 fourth close parentheses squared close curly brackets minus open parentheses 1 fourth close parentheses squared plus 2 equals 0](/application/zrc/images/qvar/MAEN10041554-2.png)
 Â
                           [Completing the square]
![rightwards double arrow](/application/zrc/images/qvar/MAEN10041554-3.png)
       Â
Â
![rightwards double arrow](/application/zrc/images/qvar/MAEN10041554-9.png)
         Â
![space space space space space space straight x plus 1 fourth equals plus-or-minus fraction numerator square root of negative 31 end root over denominator 4 end fraction](/application/zrc/images/qvar/MAEN10041554-10.png)
Â
Hence, the given quadratic equation have no real roots.Â
135 Views