The smallest relation R1 containing (1, 2) and (2, 3) which is reflexive and transitive but not symmetric is {(1, 1), (2. 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Now, if we add the pair (2. 1) to R1 to get R2, then the relation R2 will be reflexive, transitive but not symmetric. Similarly, we can obtain R3 and R4 by adding (3, 2) and (3, 1) respectively, to R1 to get the desired relations. However, we can not add any two pairs out of (2, 1), (3, 2) and (3, 1) to R1 at a time, as by doing so, we will be forced to add the remaining third pair in order to maintain transitivity and in the process, the relation will become symmetric also which is not required. the total number of desired relations is four.
Let R be the relation in the set N given by R = {(a, b) : a = b – 2, b > 6}.
Choose the correct answer.
(A) (2. 4) ∈ R (B) (3, 8) ∈ R (C) (6,8) ∈ R (D)(8,7) ∈ R
Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4