Given a non-empty set X, consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows :
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X) ? Justify your answer.
Show that the relation R in the set A = { 1, 2, 3, 4, 5 } given by
R = { (a, b) : | a – b | is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
A = {1, 2, 3, 4, 5}
R = {(a, b) : | a – b | is even}
Now | a – a | = 0 is an even number,
∴ (a, a) ∈ R ∀ a ∈ A
⇒ R is reflexive.
Again (a, b) ∈ R
⇒ | a – b | is even ⇒ | – (b – a) | is even ⇒ | b – a | is even ⇒ (b, a) ∈ R
∴ R is symmetric.
Let (a, b) ∈ R and (b, c) ∈ R
⇒ | a – b | is even and | b – c | is even ⇒ a – b is even and b – c is even ⇒ (a – b) + (b – c) is even ⇒ a – c is even ⇒ | a – c | is even ⇒ (a, c) ∈ R
∴ R is transitive.
∴ R is an equivalence relation.
∵ | 1 – 3 | = 2, | 3 – 5 | = 2 and | 1 – 5 | = 4 are even, all the elements of {1, 3, 5} are related to each other. ∵ | 2 – 4 | = 2 is even,
all the elements of {2, 4} are related to each other.
Now | 1 – 2 | = 1, | 1 – 4 | = 3, | 3 – 2 | = 1, | 3 – 4 | = 1, | 5 – 2 | = 3 and | 5 – 4 | = 1 are all odd
no element of the set {1, 3, 5} is related to any element of (2, 4}.
For the set of relational numbers, define if and only, if a d = b c. Show that R is an equivalence relation on Q.