Consider f : N → N, g : N → N and h : N → R defined as f (x) = 2 x, g(y) = 3 y + 4 and h(z) = sin z ∀ x, y and z in N. Show that h o (g o f) = (h o g) o f.
Let f, g and h be function from R to R. Show that (f + g) o h = f o h + g o h
(f . g) o h = (f o h) . (g o h)
Let    f(x) = x, g(x) | x |
where f : N → Z and g : Z → Z
Now    g(– 1) = | – | | = 1, g(1) = | 1 | = 1
g is not one-one i.e. injective.
Now f : N → Z and g : Z → Z
∴ g o f : N → Z
Let x1 , x2 ∈ N such that
(g o f) (x1) = (g o f)( x2) ∴ g (f(x1)) = g(f(x2))
∴ g(x1) = g(x2)
∴ |x1| = | x2|
⇒ x1 = x2    [∵ x1 > 0, x2 > 0 ]
∴ (g o f)(x1) = (g o f) (x2) ⇒ x1 = x2 ∴ g o f is onto.