Check the injectivity and surjectivity of the following function

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

361. how that f : A → B and g : B → C are onto, then g of : A → C is also onto.
110 Views

362. Let f : X → Y be an invertible function. Show that f has unique inverse.
105 Views

363.

Let f : x → Y be an invertible function. Show that the inverse of f–1 is f,

i.e.(f–1)–1 = f.

108 Views

364.  If f : R → R defined as straight f left parenthesis straight x right parenthesis equals fraction numerator 2 straight x minus 7 over denominator 4 end fraction is an invertible function, find f–1.
113 Views

Advertisement
365.

Let f : N → Y be function defined as f (x) = 4 x + 3, where, Y = {y ∈N : y = 4 x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse.

107 Views

366. Let Y = { n2 : n ∈ N} ⊂ N. Consider f : N → Y as f(n) = n2. Show that f is invertible. Find the inverse of f.
130 Views

367.

Let R be the relation in the set N given by R = {(a, b) : a = b – 2, b > 6}. Choose the correct answer. (A) (2, 4) ∈ R    (B) (3, 8) ∈ R     (C) (6, 8) ∈ R    (D) (8, 7) ∈ R

155 Views

368.

Show that the function f : R. → R. defined by straight f left parenthesis straight x right parenthesis equals 1 over straight x is one-one and onto, where R. is the set of all non-zero real numbers. Is the result true, if the domain R. is replaced by N with co-domain being same as R.?

147 Views

Advertisement
Advertisement

369.

Check the injectivity and surjectivity of the following functions:
f : N → N given by f(x) = x2 


f : N → N given by f(x) = x2 
It is seen that for x, y element of straight N, f(x)=f(y) rightwards double arrowx2 = y2 space space space rightwards double arrow x = y
therefore  f is injective
Now,  2space element of N, But there does not exist  any x in N such that f(x) = x2 = 2
therefore   f is not surjective
Hence, function f is injective but not surjective

114 Views

Advertisement
370.

Check the injectivity and surjectivity of the following functions:
f : Z → Z given by f(x) = x2 

122 Views

Advertisement