The longest distance of the point (a, 0) from the curve 2x2 + y2&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

Let f : R  R be a function defined by f(x) = max {x, x2}. Let S denote the set of all points in R, where f is not differentiable. Then:

  • ϕ(an empty set)

  • 1

  • 0

  • 0, 1


622.

For all twice differentiable functions f : R  R, with f(0) = f(1) = f'(0) = 0

  • f''(x) = 0, for some x  (0, 1)

  • f''(x) = 0, at every point x  (0, 1)

  • f''(0) = 0

  •  f''(x)  0, at every point x  (0, 1)


 Multiple Choice QuestionsShort Answer Type

623.

Suppose that a function f : R  R satisfies f(x + y) = f(x)f(y) for all x, y  R and f(1) = 3. If i = 1nfi = 363, then n is equal to.......


624.

If x and y be two non-zero vectors such that  x + y = xand 2x + λy is perpendicular to y, then the value of is......


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

625.

For any integer n > 1, the number of positive divisors of n is denoted by d(n). Then, for a prime P, d (d (d(P)7)) is equal to

  • 1

  • 2

  • 3

  • p


626.

k = 1513 + 23 + .... + k31 + 3 + 5 + ... + 2k - 1 is equal to

  • 22.5

  • 24.5

  • 28.5

  • 32.5


627.

The function f: C  C defined, by fx = ax + dcx + d for x  C where bd  0 reduces to a constant function, if

  • a = c

  • b = d

  • ad = bc

  • ab = cd


Advertisement

628.

The longest distance of the point (a, 0) from the curve 2x2 + y= 2x is

  • 1 + a

  • 1 - a

  • 1 - 2a +2a2

  • 1 - 2a + 3a2


C.

1 - 2a +2a2

Given curve is2x2 + y2 = 2x2x2 - 2x + y2 = 0 2x - 122 +y2 = 12 x - 122 14 + y212 = 1which represents an ellipseHere, a = 12, b = 12, h = 12, k = 0Consider a point P(h + acosθ, k + bsinθ)= P12 + 12cosθ, 12sinθ on the ellipse from which the distanceof point (a, 0) is maximumlet Q(a, 0)Now,PQ = 12 + 12cosθ - a2 + 12sinθ - 02       = 14 + 14cos2θ + a2 + 12cosθ - acosθ - a + 12sin2θPQ = 12  + a2  - a  + 12 - acosθ + 14sin2θLet y = PQ2 = 12 + a2 - a  + 12 - acosθ + 14sin2θ

For maxima and minima, put dy = 0 - 12 - asinθ + 14 . 2sinθcosθ = 0 sinθ- 12 + a + 12cosθ = 0 sinθ = 0 or - 12 + a + 12cosθ = 0 θ = 0 or cosθ = 1 - 2a sin2θ = 1 - cos2θ                 = 1 - 1 - 2a2                 = - 4a2 + 4a

Now, d2y2 < 0 for cosθ = 1 - 2aThus, distance PQ is maximum, whencosθ = 1 - 2a and sin2θ = - 4a2 + 4aNow, required longest distance is =12 + a2 - a + 12 - a1 - 2a + 14- 4a2 + 4a= 12 + a2 - a + 12 - a - a + 2a2 - a2 + a= 2a2 - 2a + 1= 1 - 2a + 2a2


Advertisement
Advertisement
629.

If f : R  R is defined by f(x) = x5 for x ∈ R, where [y] denotes the greatest integer not exceeding y, then fx : x < 71 is equal to

  • - 14, - 13, . . . 0, . . . 13, 14

  • - 14, - 13, . . . 0, . . . 14, 15

  • - 15, - 14, . . . 0, . . . 14, 15

  • - 15, - 14, . . . 0, . . . 13, 14


Advertisement