The domain of the function f(x) = log0.5x! is from Mat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

181.

If A = x  Rlπ4  x π3 and fx = sinx - x, then fA =?

  • 32 - π3, 12 - π4

  • - 12 - π4, 32 - π3

  • - π3, - π4

  • π4, π3


182.

In a ABC, atanA + btanB + ctanC = ?

  • 2r

  • r +2R

  • 2r +R

  • 2(r + R)


183.

If f is defined in [1, 3] by f(x) = x3 + bx2 + ax,such that f(1) - f(3) = 0 and f'(c) = 0, where c = 2 + 13, then (a, b) is equal to

  • ( - 6, 11)

  • 2 - 13, 2 + 13

  • (11, - 6)

  • (6, 11)


Advertisement

184.

The domain of the function f(x) = log0.5x! is

  • 0, 1, 2, 3, ...

  • 0, 1, 2, 3, ...

  • 0, 

  • 0, 1


D.

0, 1

Given, fx = log0.5x!fx is defined whenlog0.5x!  0 x!  0 . 50 x!  1 x  0, 1


Advertisement
Advertisement
185.

If f(x) = x - 1 + x - 2 + x - 3, 2 < x < 3, then f is

  • an onto function but not one-one

  • one-one function but not onto

  • a bijection

  • neither one-one nor onto


186.

If x = a is a root of multiplicity two of a polynomial equation f(x) = 0, then

  • f'(a) = f''(a) = 0

  • f''(a) = f(a) = 0

  • f'a  0  f''(a)

  • fa = f'a = 0, f''a  0


187.

Suppose f(x) = x(x + 3)(x - 2), x  [- 1, 4]. Then, a value of c in (- 1, 4) satisfying f'(c) = 10 is

  • 2

  • 52

  • 3

  • 72


188.

Let A = {- 4, - 2, - 1, 0, 3, 5} and f : A  IR be defined by

fx = 3x - 1 for x > 3x2 + 1 for - 3  x  32x - 3 for x < - 3Then the range of f is

  • - 11, 5, 2, 1, 10, 14

  • - 11, - 7, 2, 1, 8, 14

  • - 11, 5, 2, 1, 8, 14

  • - 11, - 7, - 5, 1, 10, 14


Advertisement
189.

If f : IR  IR is defined byf(x) = x - 1, for x  12 - x2, for 1 < x  3x - 10, for 3 < x < 52x, for x  5then the set of points of discontinuity of f is

  • IR - 1, 5

  • 1, 3, 5

  • 1, 5

  • IR - 1, 3, 5


190.

For the function f(x) = (x - 1)(x - 2) defined on [0, ½] the value of c satisfying Lagrange's mean value theorem is

  • 15

  • 13

  • 17

  • 14


Advertisement