If f : IR → IR is defined

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

181.

If A = x  Rlπ4  x π3 and fx = sinx - x, then fA =?

  • 32 - π3, 12 - π4

  • - 12 - π4, 32 - π3

  • - π3, - π4

  • π4, π3


182.

In a ABC, atanA + btanB + ctanC = ?

  • 2r

  • r +2R

  • 2r +R

  • 2(r + R)


183.

If f is defined in [1, 3] by f(x) = x3 + bx2 + ax,such that f(1) - f(3) = 0 and f'(c) = 0, where c = 2 + 13, then (a, b) is equal to

  • ( - 6, 11)

  • 2 - 13, 2 + 13

  • (11, - 6)

  • (6, 11)


184.

The domain of the function f(x) = log0.5x! is

  • 0, 1, 2, 3, ...

  • 0, 1, 2, 3, ...

  • 0, 

  • 0, 1


Advertisement
185.

If f(x) = x - 1 + x - 2 + x - 3, 2 < x < 3, then f is

  • an onto function but not one-one

  • one-one function but not onto

  • a bijection

  • neither one-one nor onto


186.

If x = a is a root of multiplicity two of a polynomial equation f(x) = 0, then

  • f'(a) = f''(a) = 0

  • f''(a) = f(a) = 0

  • f'a  0  f''(a)

  • fa = f'a = 0, f''a  0


187.

Suppose f(x) = x(x + 3)(x - 2), x  [- 1, 4]. Then, a value of c in (- 1, 4) satisfying f'(c) = 10 is

  • 2

  • 52

  • 3

  • 72


188.

Let A = {- 4, - 2, - 1, 0, 3, 5} and f : A  IR be defined by

fx = 3x - 1 for x > 3x2 + 1 for - 3  x  32x - 3 for x < - 3Then the range of f is

  • - 11, 5, 2, 1, 10, 14

  • - 11, - 7, 2, 1, 8, 14

  • - 11, 5, 2, 1, 8, 14

  • - 11, - 7, - 5, 1, 10, 14


Advertisement
Advertisement

189.

If f : IR  IR is defined byf(x) = x - 1, for x  12 - x2, for 1 < x  3x - 10, for 3 < x < 52x, for x  5then the set of points of discontinuity of f is

  • IR - 1, 5

  • 1, 3, 5

  • 1, 5

  • IR - 1, 3, 5


C.

1, 5

c Clearly, f(x) will be continuous in the intervals(- , 1), (1, 3), (3, 5) and (5, ) fx is a polynomial function in these intervalsNow, let us check the continuity at x = 1, 3 and 5Here,i limx1-fx = 1 - 1 = 0 and limx1+fx = 2 - 1 = 1therefore f is not continuous at x = 1ii limx3-fx = 2 - 9 = - 7 f(3) = - 7and limx3+fx = 3 - 10 = - 7therefore f is not continuous at x = 3iii limx5-fx = 5 - 10 = - 5 and limx5+fx = 2 × 5 = 10therefore f is not continuous at x = 5Thus, points of discontinuity of f is 1, 5


Advertisement
190.

For the function f(x) = (x - 1)(x - 2) defined on [0, ½] the value of c satisfying Lagrange's mean value theorem is

  • 15

  • 13

  • 17

  • 14


Advertisement