The range of the function 7-xPx-3 is from Mathematics Relation

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

441.

Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the set A = {1, 2, 3, 4}. The relation R is

  • a function

  • reflexive

  • not symmetric

  • not symmetric

149 Views

Advertisement

442.

The range of the function 7-xPx-3 is

  • {1, 2, 3}

  • {1, 2, 3, 4, 5}

  • {1, 2, 3, 4}

  • {1, 2, 3, 4}


A.

{1, 2, 3}

The given function f(x) = 7-xPx-3 would be defined if
(i) 7 - x > 0 ⇒ x < 7
(ii) x - 3 > 0 ⇒ x > 3
(iii) (x - 3) < (7 - x)
⇒ 2x < 10 ⇒ x < 5
⇒ x = 3, 4, 5
Hence Range of f(x) = {4P0, 3P1, 2P2}
Range of f(x) = {1, 3, 2}

727 Views

Advertisement
443.

Let f and g be differentiable functions satisfying g′(a) = 2, g(a) = b and fog = I (identity function). Then f ′(b) is equal to

  • 1/2

  • 2

  • 2/3

  • 2/3

143 Views

444.

Let S = {t ∈ R: f(x) = |x-π|.(e|x| - 1) sin |x| is not differentiable at t}. Then the set S is equal to

  • {0,π}

  • ϕ (an empty set)

  • {0}

  • {π}


Advertisement
445.

Let S = { x ∈ R : x ≥ 0 and 2|x-3| + x(x-6) + 6 = 0} Then S:

  • Contains exactly four elements

  • Is an empty set

  • Contains exactly one element

  • Contains exactly two elements


446.

On the set R of real numbers we define xPy if and only if xy  0. Then, the relation P is

  • reflexive but not symmetric

  • symmetric but not reflexive

  • transitive but not reflexive

  • reflexive and symmetric but not transitive


447.

On R, the relation p be defined by 'xρy holds if and only if x- y is zero or irrational'. Then,

  • ρ s reflexive and transitive but not symmetric

  • ρ s reflexive and symmetric but not transitive 

  • ρ s symmetric and transitive but not reflexive

  • ρ is equivalence relation


448.

Mean of n observations x1, x2, ..., xn, is x. If an observation xq, is replaced by xq', then the new mean is

  • x - xq + xq'

  • n - 1x + xq'n

  • n - 1x -  xq'n

  • nx - xq + xq'n


Advertisement
449.

On set A = {1, 2, 3}, relations R and S are given by

R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)},

S = {(1, 19, (2, 2), (3, 3), (1, 3), (3, 1)}.

Then,

  • S is an equivalence relation

  • S is reflexive and transitive but not symmetric

  • S is reflexive and symmetric but not transitive

  • S is symmetric and transitive but not reflexive


450.

If the function f : R → R is defined by f(x) = x2 + 135,  x  R, then f is

  • one-one but not onto

  • onto but not one-one

  • neither one-one nor onto

  • both one-one and onto


Advertisement