If f(x) = x2 - 1 and g(x) = (x + 1)2, then (gof) (x) is from Mat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

491.

For a, b  R, define a * b = aa + b, where a + b  0. If a * b = 5,  then the value of b * a is

  • 5

  • - 5

  • 4

  • - 4


492.

Let A = {x, y, z} and B = {a, b, c, d}. Which one of the following is not a relation from A to B ?

  • {(x, a), (x, c)}

  • {(y, c), (y, d)}

  • {(z, a), (z, d)}

  • {(z, b), (y, b), (a, d)}


Advertisement

493.

If f(x) = x2 - 1 and g(x) = (x + 1)2, then (gof) (x) is

  • (x + 1)4 - 1

  • x4 - 1

  • x4

  • (x + 1)4


C.

x4

Given, f(x) = x2 - 1, g(x) = (x + 1)2

Now, (gof) (x) = g(f(x))

                      = g(x2 - 1)

                      = (x2 - 1 + 1)2

                      = x4


Advertisement
494.

If the function f : [1, )  [1, ) is defined by f(x) = 2x(x - 1), then f-1(x) is

  • 12xx - 1

  • 121 - 1 + 4log2x

  • 121 + 4log2x

  • 121 + 1 + 4log2x


Advertisement
495.

If n(A) = 8 and nA  B = 2, then nA  B'  A is equal to

  • 2

  • 4

  • 6

  • 8


496.

If f(x) = sinx + cosxx  - ,  and g(x) = x2x  - , , then (fog)(x) is equal to

  • 1

  • 0

  • sin2x + cosx2

  • sinx2 + cosx2


497.

If n(A) = 5 and n(B) = 7, then the number of relations on A x B is

  • 235

  • 249

  • 225

  • 235 × 35


498.

Let ϕx = bx - ab - a + ax - ba - b, where x  R and a and b are fixed real numbers with a  b. Then, ϕa + b is equal to

  • ϕab

  • ϕ- ab

  • ϕa + ϕb

  • ϕa - b


Advertisement
499.

The range of the function f(x) = x2 + 8x2 + 4, x  R is

  • - 1, 32

  • (1, 2]

  • (1, 2)

  • [1, 2]


500.

If n(A) = 1000, n(B) = 500 and if n(A  B) 1 and  nA  B = p, then

  • 500  p  1000

  • 1001  p  1498

  • 1000  p  1498

  • 1000  p  1499


Advertisement