The domain of the function f(x) x2 - 9/x -&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

511.

If * is the operation defined by a b = ab for a, b  N, then (2 * 3) * 2 is equal to

  • 81

  • 512

  • 216

  • 64


Advertisement

512.

The domain of the function f(x) x2 - 9/x - 3, if x  36,                          if x = 3 is

  • (0, 3)

  • - , 3

  • - , 

  • 3, 


C.

- , 

Given, fx = x2 - 9x - 3, x  36,           x = 3at x = 3,LHL = limx3-x2 - 9x - 3 = limx3-x + 3      = limh03 - h + 3 = 6RHL = limx3+x2 - 9x - 3 = limx3+x + 3        = limh03 + h + 3 = 6 LHL = RHL = f3Hence, f(x) is continuous at x = 3 Domain of f(x) = - , 


Advertisement
513.

Let f(x) = x3 and g(x) = 3*. The values of A such that g[f (A)] = f[g(A)] are

  • 0, 2

  • 1, 3

  • 0, ± 3

  • 0, ± 3


514.

If fx + 12x - 1 = 2x, x  N, then the value of f(2) is equal to

  • 1

  • 4

  • 3

  • 2


Advertisement
515.

For all rest numbers x and y, it is known as the real valued function f satisfies f(x) + f(y) = f(x + y). If f(1) = 7, then r = 1100fr is equal to

  • 7 x 51 x 102

  • 6 x 50 x 102

  • 7 x 50 x 102

  • 7 x 50 x 101


516.

If f(x) = x + 1x - 1, then the value of f(f(x)) is equal to

  • x

  • 0

  • - x

  • 1


517.

If fx = 1 - x1 + xx  - 1, then f-1(x) equals to :

  • f(x)

  • 1fx

  • - f(x)

  • - 1fx


518.

Let S be the set of all real numbers. Then the relation R = {(a, b): 1 + ab > 0} on S is :

  • reflexive and symmetric but not transitive

  • reflexive and transitive but not symmetric

  • symmetric and transitive but not reflexive

  • reflexive, transitive and symmetric


Advertisement
519.

Let fx + 1x = x2 + 1x2, x  0, then f(x) equals to :

  • x2

  • x2 - 1

  • x2 - 2

  • x2 + 1


520.

Let f : R  R : f(x) = x2 and g : R  R : g(x) = x + 5, then gof is :

  • (x + 5)

  • (x + 52)

  • (x2 + 52)

  • (x2 + 5)


Advertisement