The positive root of x2 - 78.8 = 0 after first approximation by N

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

531.

If f(1) = 10, f(2) = 14, then using Newton's forward formula f(1.3) is equal to 

  • 12.2

  • 11.2

  • 10.2

  • 15.2


532.

Let f(x) = ax +bcx +d. Then, fof(x) = x provided that

  • d = - a

  • d = a

  • a = b = c =  d = 1

  • a = b = 1


Advertisement

533.

The positive root of x2 - 78.8 = 0 after first approximation by Newton Raphson method assuming initial approximation to the root is 14, is

  • 9.821

  • 9.814

  • 9.715

  • 9.915


B.

9.814

Here, x0 = 14, fx = x2 - 78.8 and f'x 2x     x1 = x0 - fx0f'x0             = 14 - 142 - 78.82 × 14 = 9.814


Advertisement
534.

In the usual notation the value of  is equal to

  •  -

  •  + 

  •  - 

  • None of the above


Advertisement
535.

The value of f(4) - f(3) is

  • f2 + 2f1 + 3f1

  • f3 + 2f2 + 3f1

  • f2 + 2f1 + 3f0

  • None of these


536.

1 + nfa is equal to

  • f(a + h)

  • f(a + 2h)

  • f(a + nh)

  • f(a + (n - 1)h)


537.

Simplify the Boolean function (x · y) + [(x + y') - y]'.

  • 0

  • 1

  • x + y

  • xy


538.

For the circuit show below, the Boolean polynomial is

  • ~ p  q  p  ~ q

  • ~ p  q  p  q

  • ~ p  ~ q  q  p

  • ~ p  q  p  ~ q


Advertisement
539.

In a Boolean Algebra B, for all x, y in B, x  x  y is equal to

  • y

  • x

  • 1

  • 0


540.

The value of 1 + 1 -  is

  • 0

  • - 1

  • 1

  • None of the above


Advertisement