Let f : R → R be defined by f(x) = x4, then

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

581.

Let * be a binary operation defined on R by a * b = a + b4,  a, b  R, then the operation * is

  • commutative and associative

  • commutative but not associative

  • associative but not commutative

  • neither associative nor commutative


Advertisement

582.

Let f : R  R be defined by f(x) = x4, then

  • f may be one-one and onto

  • f is neither one-one nor onto

  • f is one-one and onto

  • f is one-one but not onto


B.

f is neither one-one nor onto

We have, fx = x4Let         fx1 = fx2            x14 = x24             x1 = ± x2 f(x) is not one-one

Agrun, co-domAIn of f(x) = R

and Range of f(x) = [0, )

 Codomain  Range f(x) is not onto.


Advertisement
583.

Binary operation * on R - {- 1} defined by a * b = ab + 1 is

  • * is neither associative not commutative

  • * is associative but not commutative

  • * is commutative but not commutative

  • * is associative and commutative


584.

A function f from the set of natural numbers to integers defined by f(n) = n - 12, when n is odd- n2,  when n is even, is

  • one - one but not onto

  • onto but not one - one

  • one - one and onto both

  • neither one - one nor onto


Advertisement
585.

If g(x) = x2 + x - 2 and gof(x) = 2x2 - 5x+ 2, then f(x) is equal to

  • 2x - 3

  • 2x + 3

  • 2x2 + 3x + 1

  • 2x2 - 3x - 1


586.

Inverse of the function f(x) = ex - e- xex + e- x + 2 is

  • logex - 2x - 112

  • logex - 13 - x12

  • logex2 - x12

  • logex - 1x + 112


587.

If f(x) = x - 1x, x  0, 0  R and g(u) = u2 + 1, u  R then g[f(1)] and f[g(- 1)] is equal to

  • 1, 1/2

  • - 1, 1/2

  • 0, - 1

  • None of these


588.

If f(x) = 2x - 1x +5; x  - 5, then f-1(x) is equal to

  • x + 52x - 1, x  12

  • 5x + 12 - x, x  2

  • x - 52x + 1, x  12

  • 5x - 1x - 2, x  2


Advertisement
589.

A· {(B + C) x (A + B + C)} equals

  • [A B C]

  • [B A C]

  • 0

  • 1


590.

Which is incorrect ?

  • (AB)' = B'A'

  • ABθ = BAAθ

  • AB = B A

  • AB-1 = B-1A-1


Advertisement