A function f from the set of natural numbers to integers defined

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

581.

Let * be a binary operation defined on R by a * b = a + b4,  a, b  R, then the operation * is

  • commutative and associative

  • commutative but not associative

  • associative but not commutative

  • neither associative nor commutative


582.

Let f : R  R be defined by f(x) = x4, then

  • f may be one-one and onto

  • f is neither one-one nor onto

  • f is one-one and onto

  • f is one-one but not onto


583.

Binary operation * on R - {- 1} defined by a * b = ab + 1 is

  • * is neither associative not commutative

  • * is associative but not commutative

  • * is commutative but not commutative

  • * is associative and commutative


Advertisement

584.

A function f from the set of natural numbers to integers defined by f(n) = n - 12, when n is odd- n2,  when n is even, is

  • one - one but not onto

  • onto but not one - one

  • one - one and onto both

  • neither one - one nor onto


C.

one - one and onto both

Given, fn = n - 12, when n is odd- n2,  when n is evenand f : N  If1 = 0, f2 = - 1, f3 = 1, f4 = - 2 and so on

In this type of function every element of set A has unique image in set B and there is no element left in set B. Hence, f is one - one and onto function.


Advertisement
Advertisement
585.

If g(x) = x2 + x - 2 and gof(x) = 2x2 - 5x+ 2, then f(x) is equal to

  • 2x - 3

  • 2x + 3

  • 2x2 + 3x + 1

  • 2x2 - 3x - 1


586.

Inverse of the function f(x) = ex - e- xex + e- x + 2 is

  • logex - 2x - 112

  • logex - 13 - x12

  • logex2 - x12

  • logex - 1x + 112


587.

If f(x) = x - 1x, x  0, 0  R and g(u) = u2 + 1, u  R then g[f(1)] and f[g(- 1)] is equal to

  • 1, 1/2

  • - 1, 1/2

  • 0, - 1

  • None of these


588.

If f(x) = 2x - 1x +5; x  - 5, then f-1(x) is equal to

  • x + 52x - 1, x  12

  • 5x + 12 - x, x  2

  • x - 52x + 1, x  12

  • 5x - 1x - 2, x  2


Advertisement
589.

A· {(B + C) x (A + B + C)} equals

  • [A B C]

  • [B A C]

  • 0

  • 1


590.

Which is incorrect ?

  • (AB)' = B'A'

  • ABθ = BAAθ

  • AB = B A

  • AB-1 = B-1A-1


Advertisement