Let f : R → R be the function defined by f(x) = x&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

591.

Cube root of 18 by using Newton-Raphson method will be

  • 2.26

  • 2.620

  • 2.602

  • None of these


592.

The difference of the numbers (1100110011)2 and (1101001011)2 in binary system is

  • (100000)2

  • (101010)2

  • (11000)2

  • (10111)2


593.

If the function f · f . [1, )  [1, ) is defined by f(x) = 2x(x - 1), then f-1(x) is defined by

  • 12xx - 1

  • 121 ± 4log2x

  • 121 - 1 - 4log2x

  • None of these


594.

By Newton-Raphson method, the positive root of the equation x4 - x - 10 = 0 is

  • 1.871

  • 1.868

  • 1.856

  • None of these


Advertisement
595.

Which of the following function is inverse of itself

  • fx = 1 - x1 + x

  • g(x) = 5log(x)

  • h(x) = 2x(x - 1)

  • None of the above


Advertisement

596.

Let f : R  R be the function defined by f(x) = x - 3 , x  R. Then f-1(x) = ?

  • x + 3

  • x2 + 3

  • x + 32

  • x2 + 32


B.

x2 + 3

We have,          f(x) = x - 3,  x  RWe know that, ff-1x = x = f-1fx   ff-1x = f-1x - 3         x = f-1x - 3       x2 = f-1x - 3       squaring both sides f-1x = x2 + 3


Advertisement
597.

Let Z denote the set of integers define f : Z  Z by f(x) = x2, x is even0,   x is odd, then f is

  • onto but not one-one

  • one-one but not onto

  • one-one and onto

  • neither one-one nor onto


598.

Let f : R  R be defined by

fx = x +2, x  - 1x2,   - 1 < x < 12 - x, x  1

Then, the value of f(- 1.75) + f(0.5) + f(1.5) is

  • 0

  • 1

  • 2

  • - 1


Advertisement
599.

Two functions f : R  R, g : R  R are defined as follows

fx = 0, x is rational1, x is irationalgx = - 1, x is rational0,     x is irrational

Then, (fog) π + (gof) (e) is equal to

  • 0

  • - 1

  • 2

  • 1


600.

If the functions f and g are defined by f(x) = 3x - 4, g(x) = 2 + 3x for x  R respective, then g-1(f-1(5)) is equal to

  • 1

  • 12

  • 13

  • 14


Advertisement