Important Questions of Sequences and Series Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
171.

Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation

  • x2 + 18x +16 = 0

  • x2-18x-16 = 0

  • x2+18x-16 =0

  • x2+18x-16 =0

211 Views

172.

Let T be the rth term of an A.P. whose first term is a and the common difference is d. If for r some positive integers m, n, m ≠ n, Tm = 1/n  and Tn = 1/m, then a-b equals

  • 0

  • 1

  • 1/mn

  • 1/mn

254 Views

173.

The sum of the first n terms of the series 1 squared space plus space 2.2 squared space plus space 3 squared plus space 2.4 squared space plus space 5 squared space plus space 2.6 squared plus... space is space fraction numerator straight n left parenthesis straight n plus 1 right parenthesis squared over denominator 2 end fraction when n is even. When n is odd the sum is

  • fraction numerator 3 straight n space left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction
  • fraction numerator straight n squared space left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction
  • fraction numerator straight n squared space left parenthesis straight n plus 1 right parenthesis over denominator 4 end fraction
  • fraction numerator straight n squared space left parenthesis straight n plus 1 right parenthesis over denominator 4 end fraction
178 Views

174.

The sum of series fraction numerator 1 over denominator 2 space factorial end fraction space plus fraction numerator 1 over denominator 4 factorial end fraction space plus fraction numerator 1 over denominator 6 space factorial end fraction space plus space.... space is

  • fraction numerator left parenthesis straight e squared minus 1 right parenthesis over denominator 2 end fraction
  • fraction numerator left parenthesis straight e minus 1 right parenthesis squared over denominator 2 straight e end fraction
  • fraction numerator left parenthesis straight e squared minus 1 right parenthesis over denominator 2 straight e end fraction
  • fraction numerator left parenthesis straight e squared minus 1 right parenthesis over denominator 2 straight e end fraction
120 Views

Advertisement
175.

Suppose four distinct positive numbers a1, a2, a3, a4 are in G.P. Let b1 = a1, b2 = b1 + a2, b3 = b2 + a3 and b4 = b3 + a4.
Statement-I: The numbers b1, b2, b3, b4are neither in A.P. nor in G.P. Statement-II: The numbers b1, b2, b3, b4 are in H.P.

  • Both statement-I and statement-II are true but statement-II is not the correct explanation of statement-I

  • Both statement-I and statement-II are true, and statement-II is correct explanation of Statement-I

  • Statement-I is true but statement-II is false.

  • Statement-I is true but statement-II is false.

233 Views

176.

Let a1, a2, a3, ...., a49 be in A.P. such that k = 012ak-1 = 416 and  a9 + a43 = 66. if a12 + a22 + ....... + a172 = 140m then m is equal to

  • 33

  • 66

  • 68

  • 34


177.

Let f : R ➔ R be such that f is injective and f(x)f(y) = f(x + y) for  x, y  R. If f(x), f(y), f(z) are in G.P., then x, y, z are in

  • AP always

  • GP always

  • AP depending on the value of x, y, z

  • GP depending on the value of x, y, z


178.

In a GP series consisting of positive terms, each term is equal to the sum of next two terms. Then, the common ratio of this GP series is

  • 5

  • 5 - 12

  • 52

  • 5 +12


Advertisement
179.

If x is a positive real number different from 1 such that logax, logbx, logcx are in AP, then

  • b = a + c2

  • ac

  • c2 = aclogab

  • None of these


180.

If a, x are real numbers and a < 1, x < 1, then 1 + (1+ a) x + (1+ a + a2)x2 + ... is equal to

  • 11 - a1 - ax

  • 11 - a1 - x

  • 11 - x1 - ax

  • 11 + ax1 - a


Advertisement