The 5th, 8th and 11th terms of a GP. are p, q and s respectively

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

61.

The fourth term of a GP. is 27 and the 7th term is 729, find the GP.

389 Views

62.

The seventh term of a GP. is 8 times the fourth term and 5th term is 48. Find the GP.

208 Views

63.

If the GP.’s 5,10, 20, .......and 1280, 640, 320, ......have their nth terms equal, find the value of n.

387 Views

64.

The third term of a GP. is 4. Find the product of its first five terms.

812 Views

Advertisement
Advertisement

65.

The 5th, 8th and 11th terms of a GP. are p, q and s respectively. Show that q2 = ps.


Let a be the first term and r be the common ratio

                       straight t subscript 5 space equals space straight p space rightwards double arrow space ar to the power of 5 minus 1 end exponent space equals space straight p space rightwards double arrow space ar to the power of 4 space equals space straight p

                      <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

                      <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>

Now,                  space space straight q squared space equals space left parenthesis ar to the power of 7 right parenthesis squared space equals space straight a squared straight r to the power of 14                              ...(i)

                         ps space equals space left parenthesis ar to the power of 4 right parenthesis space left parenthesis ar to the power of 10 right parenthesis space equals straight a squared straight r to the power of 14                         ...(ii)

From (i) and (ii), we have

                straight q squared space equals space ps
                  
                      

115 Views

Advertisement
66.

Find all the sequences which are simultaneously in A.P. and GP.

343 Views

67.

In a finite GP. the product of the terms equidistant from the beginning and the end is always same and equal to the product of first and last term.

140 Views

68.

If the first and the nth terms of a GP. are a and b respectively and if P is the product of first n terms, prove that P2 = (ab)n.

107 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

69.

If fraction numerator straight a plus bx over denominator straight a minus bx end fraction space equals space fraction numerator straight b plus cx over denominator straight b minus cx end fraction space equals space fraction numerator straight c plus dx over denominator straight c minus dx end fractionleft parenthesis straight x not equal to 0 right parenthesis comma spaceshow that a, b, c, d are in G.P.

83 Views

 Multiple Choice QuestionsShort Answer Type

70.

If 4th, 10th and 16th terms of a GP. are x, y and z respectively, Prove that y, z are in GP.

111 Views

Advertisement