The value of 1 + 3i1 - 3i64 + 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

181.

If log0.3x - 1 < log0.09x - 1, then x lies in the interval

  • 2, 

  • (1, 2)

  • (- 2, - 1)

  • None of these


182.

The value of n = 113in + in + 1, i = - 1 is

  • i

  • i - 1

  • 1

  • 0


183.

The sum of n terms of the following series 13 + 33 + 53 + 73 + ... is

  • n2(2n2 - 1)

  • n3(n - 1)

  • n3 + 8n + 4

  • 2n4 + 3n2


184.

If w is an imginary cube root of unity, then the value of (2 - w)(2 - w2) + 2(3 - w)(3 - w2) + ... + (n - 1)(n - w)(n - w2) is

  • n24n +12 - n

  • n24n + 12 + n

  • n24n + 12

  • n24n + 1 - n


Advertisement
185.

If the first and (2n - 1)th terms of an AP, GP and HP are equal and their nth terms are respectively a, b, c, then always

  • a = b = c

  • a  b  c

  • a + c = b

  • ac - b2 = 0


186.

Let a, b, c and d be any four real numbers. Then, an +bn = cn + dn holds for any natural number n, if

  • a + b = c + d

  • a - b = c - d

  • a + b = c + d, a2 + b2 = c2 + d2

  • a - b = c - d, a2 - b2 = c2 - d2


Advertisement

187.

The value of 1 + 3i1 - 3i64 + 1 -  3i1 + 3i64

  • 0

  • - 1

  • 1

  • i


B.

- 1

We know that, w = - 1 + 32 = 1 - 3i = - 2w

and w2 = - 1 - 3i2 + 1 + 3i = - 2w2Now, 1 + 3i1 - 3i64 + 1 - 3i1 + 3i64 = - 2w2- 2w64 + - 2w- 2w2= w64 + 1w64= w + w2                    w3 = 1= - 1                         1 + w + w2 = 0


Advertisement
188.

Let x1, x2, ..., x15 be 15 distinct numbers chosen from 1, 2, 3, ..., 15. Then, the value of (x1 - 1)(x2 - 1)(x3 - 1)...(x15 - 1) is

  • always  0

  • 0

  • always even

  • always odd


Advertisement
189.

Let d(n) denotes the number of divisors of n including 1 and itself. Then, d (225), d (1125) and d(640) are

  • in AP

  • in HP

  • in GP

  • consecutive integers


190.

Let S = a, b, c  N × N × N: a + b + c = 21, a  b  c and T = a, b, c  N × N × N: a, b, c are in AP, where N is the set of all natural numbers. Then, the number of elements in the set S  T

  • 6

  • 7

  • 13

  • 14


Advertisement