The value of the sum C1n2 + C2n2 + C3n2&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

If x and y are digits such that 17! = 3556xy428096000, then x + y equals

  • 15

  • 6

  • 12

  • 13


192.

Let f(x) = x + 1/2. Then, the number of real values of x for which the three unequal terms f(x), f(2x), f(4x) are in HP is

  • 1

  • 0

  • 3

  • 2


Advertisement

193.

The value of the sum C1n2 + C2n2 + C3n2 + ... + Cnn2 is

  • Cn2n2

  • Cn2n

  • Cn2n + 1

  • Cn2n - 1


D.

Cn2n - 1

We know that

1 + xn = C0n + C1nx + C2nx2 + ... + Cnn      ...(i)and x + 1n = C0nxn + C1nxn - 1 + C2nxn - 2 + ... + Cnn On multiplying Eqs. (i) and (ii), we get 1 + x2n = C0n + C1nx + C2nx2 + ... + Cnn × C0n + C1nx + C2nx2 + ... + CnnCoefficient of xn  in RHS = C0n2 + C1n2 + ... + Cnn2and coefficient of xn  in LHS =  Cn2n C0n2 + C1n2 + ... + Cnn2 = 2n!n! n! C1n2 + ... + Cnn2 = 2n!n! n! - 1                                       = Cn2n   - 1   


Advertisement
194.

The remainder obtained when 1! + 2! + 3! + ... + 11! is divided by 12 is

  • 9

  • 8

  • 7

  • 6


Advertisement
195.

Let S = 21C0n + 222C1n + 233C2n + ... + 2n + 1n + 1Cnn. Then, S equals

  • 2n + 1 - 1n + 1

  • 3n + 1 - 1n + 1

  • 3n - 1n

  • 2n - 1n


196.

If a, b and c are positive numbers in a GP, then the roots of the quadratic equation

logeax2 - 2logebx + logec = 0 are

  • - 1 and logeclogea

  • 1 and - logeclogea

  • 1 and logac

  • - 1 and logca


197.

The sum of the series n = 1sinn! π720 is

  • sinπ180 + sinπ360 + sinπ540

  • sinπ6 + sinπ30 + sinπ120 + sinπ360

  • sinπ6 + sinπ30 + sinπ120 + sinπ360 + sinπ720

  • sinπ180 + sinπ360


198.

The coefficient of x3 in the infinite series  expansion of 

21 - x2 - x, for x < 1, is

  • - 116

  • 158

  • - 18

  • 1516


Advertisement
199.

For every real number x, 

let f(x) = x1! + 32!x2 + 73!x3 + 154!x4 + ...  Then, the equation f(x) = 0 has

  • no real solution

  • exactly one real solution

  • exactly two real solutions

  • infinite number of real solutions


200.

Let S denote the sum of the infinite series 1 + 82! + 213! + 404! + 655! + ...

  • S < 8

  • S > 12

  • 8 < S < 12

  • S = 8


Advertisement