Six numbers are in AP such that their sum is 3. The first term is

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

211.

The sum of the series 1 + 12C1n + 13C2n + ... + 1n + 1Cnn is equal to

  • 2n + 1 - 1n + 1

  • 32n - 12n

  • 2n + 1n + 1

  • 2n + 12n


212.

The value of r = 21 + 2 + ... + r - 1r!

  • e

  • 2e

  • e2

  • 3e2


213.

The remainder obtained when 1! + 2! + ... + 95! is divided by 15 is

  • 14

  • 3

  • 1

  • 0


214.

If a, b and c are in arithmetic progression, then the roots of the equation ax - 2bx + c = 0 are

  • 1 and ca

  • - 1a and - c

  • - 1 and - ca

  • - 2 and - c2a


Advertisement
215.

Let the coefficients of powers of x in the 2nd, 3rd and 4th terms in the expansion of (1 + x)n, where n is a positive integer, be in arithmetic progression. Then, the sum of the coefficients of odd powers of x in the expansion is

  • 32

  • 64

  • 128

  • 256


216.

The sum 1 x 1! + 2 x 2! + ... + 50 x 50! equals

  • 51!

  • 51! + 1

  • 51! + 1

  • × 51!


Advertisement

217.

Six numbers are in AP such that their sum is 3. The first term is 4 times the third term. Then, the fifth term is

  • - 15

  • - 3

  • 9

  • - 4


D.

- 4

Let the numbers be

a - 5d, a - 3d, a - d, a + d, a + 3d, a + 5d

 a - 5d + a - 3d + a - d + a + d + a + 3d + a + 5d = 3

 Sum = 3

 6a = 3   a = 12

Also, given T1 = 4T3, where T1, T3 are respectively, first and the third term of AP.

 a - 5d = 4(a - d)           d = - 3a = - 32 The fifth terma + 3d = 12 + 3- 32 = 12 - 92 = - 4


Advertisement
218.

The sum of the infinite series 1 +13 + 1 . 33 . 6 +1 . 3 . 53 . 6 . 9 + 1 . 3 . 5 . 73 . 6 . 9 . 12 + ... is equal to

  • 2

  • 3

  • 32

  • 13


Advertisement
219.

If 64, 27, 36 are the Pth Qth and Rth terms of a GP, then P + 2Q is equal to

  • R

  • 2R

  • 3R

  • 4R


220.

The coefficient of x10 in the expansion of 1 + (1 + x) + ... + (1 + x)20

  • C919

  • C1020

  • C1121

  • C1222


Advertisement