If three positive real numbers a, b, c are in AP and abc = 4

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

231.

The value of 23! +45! + 67! + ...

  • e12

  • e- 1

  • e

  • e- 13


232.

If sum of an infinite geometric series is 4/3 and its Ist term is 3/4, then its common ratio is

  • 7/16

  • 9/16

  • 1/9

  • 7/9


233.

The value of log35 × log2527 × log497log813 is

  • 1

  • 6

  • 23

  • 3


234.

Sum of n terms of the following series 13 + 33 + 53 + 73 + ... is

  • n2(2n2 - 1)

  • n3(n - 1)

  • n3 + 8n + 4

  • 2n4 + 3n2


Advertisement
235.

GM and HM of two numbers are 10 and 8 respectively. The numbers are

  • 5, 20

  • 4, 25

  • 2, 50

  • 1,100


236.

The value of n for which is the xn +1 + yn + 1xn + yn geometric mean of x and y is

  • n = - 12

  • n = 12

  • n = 1

  • n = - 1


237.

If angles A, B and C are in AP, then a + cb equal to

  • 2sinA - C2

  • 2cosA - C2

  • cosA - C2

  • sinA - C2


238.

The sum of the infinite series

1 + 12! + 1 . 34! + 1 . 3. 56! + ...

  • e

  • e2

  • e

  • 1e


Advertisement
Advertisement

239.

If three positive real numbers a, b, c are in AP and abc = 4, then the minimum possible value of b is 2

  • 232

  • 223

  • 213

  • 252


B.

223

Since, a, b and c are in AP.

Let d be the common difference.

 a = b - d, b = d, c = b + d

Also,                   abc = 4

        b - ddb + d = 4                 b2 - d2b = 4                              b3 = 4 + d2b                             b3  4                              b  223


Advertisement
240.

For what value of m, am + 1 + bm + 1am + bm  is the arithmetic mean of 'a' and 'b' ?

  • 1

  • 0

  • 2

  • None of these


Advertisement