12! + 14! + 16! + ...1 + 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

If a, b, c be in arithmetic progression, then the value of (a + 2b - c)(2b + c - a)(a + 2b + c) is

  • 16abc

  • 4abc

  • 8abc

  • 3abc


252.

If three real numbers a, b, c are in harmonic progression, then which of the following is true ?

  • 1a, b, 1c are in AP

  • 1bc, 1ca, 1ab are in HP

  • ab, bc, ca are in HP

  • ab, bc, ca are in HP


253.

If the arithmetic mean of a and b is an + bnan - 1 + bn - 1, then the value of n is

  • - 1

  • 0

  • 1

  • None of the above


Advertisement

254.

12! + 14! + 16! + ...1 + 13! + 15! + ... equals

  • e + 1

  • e - 1e + 1

  • e - 1

  • None of these


B.

e - 1e + 1

Given, 12! + 14! + 16! + ...1 + 13! + 15! + ...= e + e- 12 - 1e - e- 12 = e + e- 1 - 2e - e- 1= e2 + 1 - 2ee2 - 1 = e - 12e - 1e + 1= e - 1e + 1


Advertisement
Advertisement
255.

The sum of the series

a - ba + 12a - ba2 + 13a - ba3 + ...  is

  • logeab

  • logea - ba

  • logeba

  • None of these


256.

The harmonic mean of the roots of the equation

5 + 2x2 - 4 + 5x + 8 + 25 = 0 is

  • 2

  • 4

  • 6

  • 8


257.

The sum of n terms of the following series 1 + (1 + x) + (1 + x + x2) +... will be

  • 1 - xn1 - x

  • x1 - xn1 - x

  • n1 - x - x1 - xn1 - x2

  • None of the above


258.

If A1, A2; G1, G2 and H1, H2 be two AM's, GM's and HM's between two quantities, then the value of G1G2H1H2 is

  • A1 + A2H1 + H2

  • A1 - A2H1 + H2

  • A1 + A2H1 - H2

  • A1 - A2H1 - H2


Advertisement
259.

12 + 1 + 22 + 2 + 32 + 3 + ... + n2 + n is equal to

  • nn + 12

  • nn + 122

  • nn + 1n + 23

  • nn + 1n + 2n + 34


260.

21/4 . 41/8 . 81/16 . 161/32 ... is equal to

  • 1

  • 2

  • 32

  • 52


Advertisement