If the sum offour numbers in GP is 60 and the arithmetic mean of

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

281.

If logxa, ax2 and logbx are in GP, then x is equal to

  • logblogab

  • logloga

  • logloga + loglogb

  • logalogba


282.

At the foot of a mountain the elevation of its summit is 45°. After ascending 2 km towards the mountain up an incline of 30°, the elevation changes to 60°. The height ofmountain will be

  • 3 - 1

  • 1 - 3

  • 1 + 3

  • 3


283.

If a + b1 - ab, b + c1 - bc are in AP, then a, 1b and c are in

  • AP

  • GP

  • HP

  • None of these


284.

The number of terms in the series 105 + 103 + 101 + ... + 49 + 47 is

  • 28

  • 30

  • 25

  • 22


Advertisement
285.

The geometric mean of roots of the equation x2 - 18x + 81 = 0 is

  • 18

  • 6

  • 9

  • 3


286.

The sum of n terms of the series 1 + 5 + 12 + 22 + 35 + ... is

  • n2n + 18

  • n2n + 16

  • n2n + 12

  • None of these


287.

If geometric mean and harmonic mean of two numbers a and b are 16 and 64/5 respectively, then the value of a : b is

  • 4 : 1

  • 3 : 2

  • 2 : 3

  • 1 : 4


Advertisement

288.

If the sum offour numbers in GP is 60 and the arithmetic mean of the first and last numbers is 18, then the numbers are

  • 3, 9, 27, 81

  • 4, 8, 16, 32

  • 2, 6, 18, 54

  • None of these


B.

4, 8, 16, 32

Let four terms mn a GP be ar3, ar, ar and ar3According to the given condition,ar3 + ar + ar + ar3 = 60    ...iand ar3 + ar32 = 18   ar3 + ar3 = 36            ...iiNow, from Eq (i), we havear + ar + ar3 + ar3 = 60     ar + 1r + 36 = 60    from Eq.(ii)              ar + 1r = 24      ...(iii)

On dividing Eq.(iii) by Eq.(ii), we getar3 + 1r3ar + 1r = 3624 r + 1rr2 + 1r2 - 1r + 1r = 32 2r2 + 112 - 1 = 3 2r4 + 1  -r2r2 = 3   2r4 + 2 - 2r2 = 3r2 2r4 - 5r2 + 2 = 0 2r4 - 4r2 - r2 + 2 = 0 2r2r2 - 2 - 1r2 - 2 = 0 r2 - 22r2 - 1 = 0 r2 = 2, 2r2 = 1 r = ± 2, r = ± 12

On putting r = 2 in Eq. (iii), we geta2 + 12 = 24  a2 + 12 = 24              3a = 24a2                a = 82 Senes becomes 8223, 822, 822and 8223 i.e., 32, 16, 8 and 4.If we take r = 12, we get the seris 4, 8, 16 and 32.


Advertisement
Advertisement
289.

iF a,b and c are in HP, then for any n  N, which one of the following is true ?

  • an + cn < 2bn

  • an + cn > 2bn

  • an + cn = 2bn

  • None of the above


290.

The sum of the series 12 . 3 + 14 . 5 + 16 . 7 + ... is

  • loge2

  • log2e

  • e2

  • 2e


Advertisement