The roots of the equation x3 - 14x2 + 56x - 64 = 9 are in from M

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

301.

The roots of the equation x3 - 14x2 + 56x - 64 = 9 are in

  • AGP

  • HP

  • AP

  • GP


B.

HP

We have,x3 - 14x2 + 56x - 64 = 0at x = 2, 8 - 14 . 4 + 56 . 2 - 64 = 0                 = 8 - 56 + 112 - 64 = 0Therefore, the given equation can be written asx2x - 2 - 12xx - 2 + 32x - 2 = 0                     x - 2x2 - 12x + 32 = 0                        x - 2x - 4x - 8 = 0

The roots are 2, 4, 8 which are in GP.


Advertisement
302.

1 + 1 + 22! + 1 + 2 + 223! + ... is equal to

  • e2 + e

  • e2

  • e2 - 1

  • e2 - e


303.

If the altitude of a triangle are in arithmatic progression, then the sides of the triangles are in

  • AP

  • HP

  • GP

  • AGP


304.

If tn14n + 2n + 3 for n = 1, 2, 3 ..., then 1t1 + 1t2 + ... + 1t2003 is equal to

  • 40063006

  • 40033007

  • 40063008

  • 40063009


Advertisement
305.

12! + 1 + 23! + 1 + 2 +34! + ... is equal to :

  • e2

  • e3

  • e4

  • e5


306.

The value of the series xlogea + x33!logea3 + x55!logea5 + ... is

  • coshxlogea

  • cothxlogea

  • sinhxlogea

  • tanhxlogea


307.

n = 12n2 + n + 1n! is equal to

  • 2e - 1

  • 2e + 1

  • 6e - 1

  • 6e + 1


308.

If a <1, b = k = 1akk, then a is equal to

  • k = 1- 1kbkk

  • k = 1- 1k - 1bkk!

  • k = 1- 1kbkk - 1!

  • k = 1- 1k - 1bkk + 1!


Advertisement

 Multiple Choice QuestionsMatch The Following

309.

The correct matching of List-I from List-II is :

         List- I                               List-II

(A)   1 - x- n                     (i)      xx + 1

(B)    1 + x- n                   (ii)      1 - nx + nn + 12!x2 - ... if x < 1

(C)    if x > 1, then             (iii)     1 + nx + nn + 12!x2 + ... if x < 1

1 + 1x + 1x2 + ... is

(D) If x > 1, then1 - 2x2 + 3x4 - 4x6 +    (iv)     xx - 1

                                        (v)     x4x2 + 12

                                        (vi)     x4x2 - 12    

A. A B C D (i) (i) (iii) (iv) (v)
B. A B C D (ii) (ii) (iii) (iv) (v)
C. A B C D (iii) (iii) (ii) (iv) (v)
D. A B C D (iv) (ii) (iii) (i) (v)

 Multiple Choice QuestionsMultiple Choice Questions

310.

1 + 24 + 24 58 + 24 58 812 + 24 58 812 1116 + . . . . is equal to:

  • 4 - 23

  • 163

  • 43

  • 432


Advertisement